2016

GENERAL PRODUGT CATALOG

Potary encoders
Linear encoders
(O) PRECIZIKA

Company

 was founded

Developed New Device for Encoder Inspection BE-178

First Coordinate Measuring Machine BE-140K

The National Science Prize for Encoders Development

ABOUT COMPANY

"Precizika Metrology" is the new name of former Lithuanian-American Joint Venture "Brown \& Sharpe - Precizika". The company has proud history of old traditions in the leadership of design and production of metrological equipment. Its workforce has been involved for over fifty years in the supply of measuring technology and systems to automate factories as well as in the development of optical scale manufacturing technology.
In 2000 the production process was certified to fully meet the requirements of ISO 9002, in 2003-ISO 9001.
The company's goal is to consistently supply high quality products and services to meet customer demands on a timely basis. The main company's products are the linear and angular glass scale gratings, the linear and rotary displacement measuring systems, the mechanical parts and components.
We are attentive to every Your inquiry and we are sure of that timely and right attitude along with sincere human attention leads us to long-lasting cooperation.

CONTENT

Precizika Metrology4Operating principle of encoders 4
Icons explaned 7
PHOTOELECTRIC ROTARY ENCODERS
A28 8
A36 10
AK36 ${ }^{\text {NEW }}$ 12
A42M 14
A75M 16
AK50 18
A58 20
AK58 24
AP58 ${ }^{\text {NEW }}$ 28
A58H 30
A58H1 32
A58HE 34
A58HM 36
A90H. 38
A110 40
A170 42
A170H 44
MACN=TIC ROTARY ENGODERS
AM36 46
AM58 48
РHOTOELECTRIC LINEAR ENCODERS
L18 52
L18B 54
L18C 56
L18T 68
L23 60
LK24 62
L35 64
L35T 66
L37 ${ }^{\text {NEW }}$ 68
L50 70
MACNETIC LINEAR ENCODERS
MT 72
CMT 76
PCMT-F 80
MK 84
ACCESSORIES
Encoder Couplings 86
NK interpolator 88
CS 3000 90
CS 5000 91
Encoder electrical connection 92

PRECIZIKA METROLOGY

Closed Joint-stock company "Precizika Metrology" (former JV "Brown \& Sharpe - Precizika") was founded in 1991 on the basis of Vilnius branch of Experimental Scientific Research Institute of Machine Tools, that was founded in 1961. Over the period of 50 years our team was engaged in the creation, production and implementation of precision machine tools, optoelectronic measuring systems and components, dividing machines, CMMs. In 1970-1990 our company produced more than half encoders and CMMs in all former USSR. Photoelectric linear and rotary position encoders produced by our company were widely used in the former USSR, some of them are operating until now in the machine tool and metalworking industries.

Since formation of Joint Venture "Brown \& Sharpe Precizika" in 1991 its major co-owner was one of the world's largest manufacturers of coordinate measuring machines (CMM) the US company "Brown \& Sharpe", which in May 2001 became a part of a global engineering and technology group Hexagon (Sweden). In 2007 JV "Brown \& Sharpe - Precizika" became an independent enterprise CJSC "Precizika Metrology" after internal reorganization of Hexagon group.

The company currently manufactures:

- photoelectric and magnetic linear position encoders;
- photoelectric rotary and angle encoders;
- glass scale gratings (linear and angular);

All new designs of linear and rotary encoders are based on flexible combination of classic and original principles of optical-mechanical design, using modern opto-electronic components and processor technology.
Precizika Metrology worldwide sales takes more than 98\% of total revenue.

Quality and reliability is essential for all our products because they become integral part of sophisticated and valuable equipment. Our achievements are acknowledged by our world-known customers. Along with big companies we also satisfy needs of our smaller customers. They can get large number of customized solutions as the result of our cumulative competence and experience.

Precizika Metrology's constant research and development activities together with implementation of new technologies give more opportunities to us and our customers. These activities were many times awarded by scientific society and government of the Republic of Lithuania.

OPERATING PRINCIPLE OF ENCODERS

Photoelectric encoders are used to convert working parts (machine tools, robots, etc.) angular or linear displacements into electrical signals containing information about the magnitude and direction of the displacement. After further signal processing by the numeric control devices (processor complexes, digital read out devices), this information is used to control moving
parts of the equipment.
Photoelectric encoders operate on the principle of light modulation by passing it through a pair of scales. Then it hits light-sensitive detectors and is converted into sinusoidal signals, which are further processed by electronic circuits.

ROTARY ENCODERS

The encoder can be divided into three main assemblies: mechanical, optical and electronic.
Mechanical assembly provides rotation of encoder shaft relative to housing, protects optical and electronic assemblies from moisture, dust and vibration. Optical assembly consists of a light source - infrared light emitted diode (LED) (or LED and condensing lens for precision encoders), reticle and disc scale. Disc scale and reticle pair modulates the light passing through them. On the reticle lines are located in four sectors: the sectors in the pairs are shifted by half step of lines and between pairs shift is $1 / 4$ step of lines. Additional code sector is located on the reticle for reference signal generation. Each output signal of the encoder is formed by a pair of photodiodes and due to antiphase photodiodes connection the DC signal offset is compensated. Additional pair of photodiodes generates the reference position signal.
Four photodiodes arranged behind the disc and reticle generate two orthogonal current signals I 1 and I 2 . Two photodiodes arranged behind the code sectors generate reference signal 10 . Depending on the output signals required by the application the appropriate electronic block is built into the encoder, it translates photodiode current to four output signal types: $11 \mu \mathrm{~A}$ sine-wave current (version A,) 1Vpp sine-wave voltage (version AV), TTL square-wave (version F) or HTL square-wave (version F).

LINEAR ENCODERS

The encoder consists of optical-mechanical and electronic assemblies. Sealed linear encoder consists of scale fixed in the special aluminium housing, reticle with
light source (LED) and PCB. In the open type linear encoder (without protective housing) the scale is mounted on the object and fixed by special clamps or simply glued to the surface. The reticle assembly moves along the scale supported by ball bearings and is connected to measuring head housing via independent spring suspension. Sealing lips are mounted in the housing with scale for the protection of inner space of encoder from dust and moisture ingress (IP53). Measuring head is connected via cable to the CNC, DRO or other processing equipment. In some applications special protection is not necessary and then open versions of encoders can be used.

Optical assembly consists of light source - infrared light emitted diode (LED), reticle and scale. Scale and reticle pair modulates the light passing through them. On the reticle lines are located in four sectors: the sectors in the pairs are shifted by half step of lines and between pairs shift is $1 / 4$ step of lines. Additional code sector is located on the reticle for reference signal generation. Each output signal of the encoder is formed by a pair of photodiodes and due to antiphase photodiodes connection the DC signal offset is compensated. Additional pair of photodiodes generates the reference position signal. Four photodiodes arranged behind the reticle generate two orthogonal current signals I1 and I2. Two photodiodes arranged behind the code sectors generate reference signal IO. Depending on the output signals required by the application the appropriate electronic block is built into the encoder, it translates photodiode current to four types output signals: $11 \mu \mathrm{~A}$ sine-wave current (version A), 1Vpp sine-wave voltage (version AV), TTL squarewave (version F) or HTL square-wave (version F).

ABSOLUTE ENCODERS

Absolute encoder is a device that provides absolute positional information. Absolute encoder generates a unique code for each position. The resolution is equal to 2^{n} ($n=$ number of bit), encoder uses gray (a) or binary (b) coding, which is translatable into many different protocols.

This encoder type is normally used to monitor shaft position during power up and power down. Unlike incremental encoders, the encoded output lets you read the shaft position without moving the encoder.

Absolute optical encoders use optical-mechanical components similar to those of the incremental optical encoder but code disc, reticle and electronic processor are different. Code disc has many tracks depending on resolution and code.

Sine-wave current signal, version $A(\sim 11 \mu A) ; U=+5 V \pm 5 \%$

I_{2} lags I_{1} for clockwise rotation (viewed from shaft side)
Output signals $\mathrm{I}_{1}, \mathrm{I}_{2}$ amplitude at load $1 \mathrm{k} \Omega$:
7... $16 \mu \mathrm{~A}$

Value of reference signal I_{0} at load $1 \mathrm{k} \Omega$:
2... $8 \mu \mathrm{~A}$ (useful part)

Phase difference between signals I_{1} and $I_{2}: 90^{\circ} \pm 10^{\circ}$
Phase difference between signals I_{1} and $\mathrm{I}_{0}: 135^{\circ} \pm 60^{\circ}$

Recommended connection diagram

Sine-wave voltage signal, version AV (~ 1 Vpp); U = +5V $\pm 5 \%$

Recommended connection diagram

$\mathrm{R} 1<51 \mathrm{ohm} \quad \mathrm{C} 1<47 \mathrm{pF} \quad \mathrm{C} 3=100 \mathrm{pF}$ R2 $=10 \mathrm{kOhm} \quad \mathrm{C} 2=27 \mathrm{pF}$
z - Cable impedance $=120 \mathrm{Ohm}$
Channels B and R are similar to channel A

TTL (\downarrow) square-wave signal, version F; $\mathbf{U}=+5 \mathrm{~V} \pm 5 \%$

U2 lags U1 for clockwise rotation (viewed from shaft side)
Output signals level at current load 20 mA :
\log " 1 " $\geq 2.4 \mathrm{~V}$; \log " 0 " $\leq 0.5 \mathrm{~V}$
Maximum rise and fall time: 0.1...0.2 ms
Reference signal delay is no bigger than $0.1 \mu \mathrm{~s}$

Recommended connection diagram

HTL (ПЬ) square-wave signal, version F; U = +(10...30V) $\pm 5 \%$

U2 lags U1 with clockwise rotation (viewed from shaft side)
Output signals level at current load 20 mA :
\log " 1 " \geq ($\mathrm{U}-2.0$) V; \log " 0 " $\leq 0.5 \mathrm{~V}$
Maximum rise and fall time: 0.3 ms
Reference signal delay is no bigger than $0.1 \mu \mathrm{~s}$

Recommended connection scheme

z- Cable impedance $=120 \mathrm{Ohm}$
Channels U2 and U0 are similar to channel U1

SSI

BiSS C

IGONS EXPLAINED

Small sizes Long distances (only tor linear encoders)

A28

PHOTOELECTRIC ROTARY ENCODER

Photoelectric rotary encoder A28 is used to establish an informational link between the key machine components, industrial robots, comparators and DCC, NC or Digital Readout Units. It provides information about the
value and direction of motion. The encoder is used in automatic control, on-line gauging, process monitoring systems, etc.

MECHANICAL DATA

Line number on disc (z)	$\begin{aligned} & \text { 60; 100; 200; 250; } \\ & 360 ; 500 ; 1000 ; \\ & \text { 1024; 1500; 2000; } \\ & \text { 2500 } \end{aligned}$
Number of output pulses per revolution	$\begin{aligned} & \text { Z x k, where } \\ & k=1,2,3,4,5,8,10 \end{aligned}$
Maximum shaft speed	6000 rpm
Maximum shaft load: - axial - radial (at shaft end)	$\begin{aligned} & 5 \mathrm{~N} \\ & 10 \mathrm{~N} \end{aligned}$
Accuracy (T_{1}-period of lines on disc in arc. sec)	$\pm 0.1 \mathrm{~T}_{1}$ arc. sec
Starting torque at $20^{\circ} \mathrm{C}$	$\leq 0.015 \mathrm{Nm}$
Rotor moment of inertia	$<2 \mathrm{gcm}{ }^{2}$

ELECTRIGAL DATA

VERSION	A28-F ПلTTL	Direction of signals	U2 lags U1 for clockwise rotation (viewed from shaft side)
Supply voltage	$+5 \vee \pm 5 \%$		
		Maximum rise and fall time	$<0.5 \mu \mathrm{~s}$
Max. supply current (without load)	120 mA	Standard cable length	0.5 m ; without connector
Light source	LED		
Incremental signals	Differential square - wave U1/U1 and U2/U2. Signal levels at 20 mA load current: - low (logic "0") $\leq 0.5 \mathrm{~V}$ - high (logic "1") $\geq 2.4 \mathrm{~V}$	cable leng	25 m
		Output signals	$\mathrm{a}=0.25 \mathrm{~T} \pm 0.125 \mathrm{~T}$
Reference signal	One differential square-wave UO/UO per revolution. Signal levels at 20 mA load current : - low (logic "0") $\leq 0.5 \mathrm{~V}$ - high (logic "1") $\geq 2.4 \mathrm{~V}$		
Maximum operating frequency	$(160 \times k) \mathrm{kHz}$, k-interpolation factor		a.

ACCESSORIES

CONNECTORS FOR CABLE	B12 12-pin round connector	C12 12-pin round connector	D9 9-pin flat connector	D15 15-pin flat connector	RS10 10-pin round connector	ONC 10-pin round connector
DIGITAL READOUT DEVICES		CS3000			CS5000	
COUPLING	SC30					

Notes:

1. Maximum working rotation speed (with proper encoder counting) is limited by maximum operating frequency and maximum mechanical rotation speed.
2. If cable extension is used, power supply conductor cross-section should not be smaller than 0.5 mm 2 .

PHOTOELECTRIC ROTARY ENCODER

Photoelectric rotary encoder A36 is used to establish an informational link between the key machine components, industrial robots, comparators and DCC, NC or Digital Readout Units. It provides information about the value and direction of motion. The encoder is used in automatic control, on-line gauging, process monitoring systems, etc.

MECHANIGAL DATA

	100; 200; 250; 360; Line number on disc (z) Number of output pulses per revolution $1500 ; 2000 ; ~ 2500 ; ~$ 3600
Maximum shaft speed	Z x k, where $\mathrm{k}=1,2,3,4,5,8,10$
Maximum shaft load: - axial - radial (at shaft end)	10000 rpm
Accuracy $\left(T_{1}-\right.$-period of lines on disc in arc. sec)	5 N
Starting torque at $20^{\circ} \mathrm{C}$	10 N

Three versions of output signals are available:

- A36-A - sinusoidal signals, with amplitude approx. $11 \mu \mathrm{App} ;$
- A36-AV - sinusoidal signals, with amplitude approx. 1 Vpp;
- A36-F - square-wave signals TTL or HTL.

Rotor moment of inertia	$<2 \mathrm{gcm}^{2}$
Protection (IEC 529) - for axial cable outlet - for radial cable outlet	IP54
Maximum weight without cable	0.07 kg
Operating temperature	$-10 \ldots+70^{\circ} \mathrm{C}$
Storage temperature	$-30 \ldots+80^{\circ} \mathrm{C}$
Maximum humidity (non-condensing)	98%
Permissible vibration (55 to 2000 Hz)	$\leq 100 \mathrm{~m} / \mathrm{s}^{2}$
Permissible shock (11 ms)	$\leq 300 \mathrm{~m} / \mathrm{s}^{2}$

C
For IP54 (standard)

C

For IP64 (on option)

ELIECTRIGAL DATA

VERSION	$\mathrm{A} 36-\mathrm{A} \sim 11 \mu \mathrm{App}$	A36-AV $\sim 1 \mathrm{Vpp}$	A36-F ПЏ TTL; П】 HTL
Supply voltage	$+5 \mathrm{~V} \pm 5 \%$	$+5 \mathrm{~V} \pm 5 \%$	$+5 \mathrm{~V} \pm 5 \%$; $(10$ to 30$) \mathrm{V}$
Max. supply current (without load)	80 mA	120 mA	120 mA
Light source	LED	LED	LED
Incremental signals	Two sinusoidal I_{1} and I_{2} Amplitude at $1 \mathrm{k} \Omega$ load: $\begin{aligned} & -11=7-16 \mu \mathrm{~A} \\ & -12=7-16 \mu \mathrm{~A} \end{aligned}$	Differential sine $+\mathrm{A} /-\mathrm{A}$ and $+\mathrm{B} /-\mathrm{B}$ Amplitude at 120Ω load: $\begin{aligned} -A & =0.6-1.2 \mathrm{~V} \\ -B & =0.6-1.2 \mathrm{~V} \end{aligned}$	Differential square-wave $\mathrm{U} 1 / \overline{\mathrm{U} 1}$ and $\mathrm{U} 2 / \overline{\mathrm{U} 2}$. Signal levels at 20 mA load current: - low (logic " 0 ") $\leq 0.5 \mathrm{~V}$ at $U_{p}=+5 \mathrm{~V}$ - low (logic "0") $\leq 1.5 \mathrm{~V}$ at $\mathrm{U}_{\mathrm{p}}=10$ to 30 V - high (logic "1") $\geq 2.4 \mathrm{~V}$ at $U_{P}=+5 \mathrm{~V}$ - high (logic "1") $\geq\left(U_{p}-2\right) \vee$ at $U_{p}=10$ to 30 V
Reference signal	One quasi-triangular I peak per revolution. Signal magnitude at 1 kW load: $-I_{0}=2-8 \mu \mathrm{~A}$ (usable component)	One quasi-triangular $+R$ and its complementary -R per revolution. Signals magnitude at 120 W load - $\mathrm{R}=0.2-0.8 \mathrm{~V}$ (usable component)	One differential square-wave UO/UO per revolution. Signal levels at 20 mA load current: - low (logic " 0 ") $<0.5 \mathrm{~V}$ at $U_{p}=+5 \mathrm{~V}$ - low (logic "0") $<1.5 \mathrm{~V}$ at $\mathrm{U}_{\mathrm{p}}=10$ to 30 V - high (logic "1") $>2.4 \mathrm{~V}$ at $U_{p}=+5 \mathrm{~V}$ - high (logic "1") $>\left(U_{P}-2\right) \vee$ at $U_{P}=10$ to 30 V
Maximum operating frequency	$(-3 \mathrm{~dB}) \geq 160 \mathrm{kHz}$	$(-3 \mathrm{~dB}) \geq 180 \mathrm{kHz}$	$(180 \times \mathrm{k}) \mathrm{kHz}$, k-interpolation factor
Direction of signals	I_{2} lags I_{1} for clockwise rotation (viewed from shaft side)	+B lags +A for clockwise rotation (viewed from shaft side)	U2 lags U1 with clockwise rotation (viewed from shaft side)
Maximum rise and fall time	-	-	$<0.5 \mu \mathrm{~s}$
Standard cable length	1 m , without connector	1 m , without connector	1 m , without connector
Maximum cable length	5 m	25 m	25 m
Output signals			

[^0]
ACCESSORIES

CONNECTORS FOR CABLE	B12 12-pin round connector	C9 9-pin round connector	C12 12-pin round connector	D9 9-pin flat connector	D15 15-pin flat connector	RS10 10-pin round connector	ONC 10-pin round connector
DIGITAL READOUT DEVICES		CS3000			CS5000		
COUPLING				SC30			
EXTERNAL INTERPOLATOR				NK			

ORDER FORM

ABSOLUTE ROTARY ENCODER

Absolute singleturn and multiturn (battery buffered) solid shaft rotary encoders are used for generation of coded output signals which provide information about controlled object absolute position.

In singleturn version rotary encoder AK36 has resolution from 9 up to 21 bit per revolution. Output signals interface is BiSS C or SSI. Operating principle is photoelectrical.
In multiturn version AK36 has singleturn resolution from

9 up to 21 bit per revolution with 12/16/20/24 bit resolution of multiturn counter on BiSS C interface. With SSI interface the encoder AK36 has resolution from 9 up to 21 bit per revolution with 9 up to 40 bit resolution of multiturn counter. Battery is placed inside of encoder. Operating principle is photoelectrical and magnetic.
Absolute encoder is intended to use in robotics industry, automated and automatizated lines in industry, control devices of equipment and machines, various control systems, precise machine tools and others.

MECHANIGAL DATA

Maximum shaft speed	10000 rpm
Maximum shaft load: - axial - radial (at shaft end)	5 N
Starting torque at $20^{\circ} \mathrm{C}$	$\leq 0.002 \mathrm{Nm}$
Rotor moment of inertia	$<2 \mathrm{gcm}^{2}$
Protection (IEC 529)	$\mathrm{IP54}$
- Standart	
- Optional	IP64
Maximum weight without cable	0.1 kg

Operating temperature:	
- singleturn version	$-20 \ldots+80^{\circ} \mathrm{C}$
- multiturn version	$-10 \ldots+70^{\circ} \mathrm{C}$

Storage temperature: - singleturn version - multiturn version	$-30 \ldots+90^{\circ} \mathrm{C}$
Maximum humidity (non-condensing)	$-20 \ldots+80^{\circ} \mathrm{C}$
Permissible vibration (55 to 2000 Hz)	$\leq 100 \mathrm{~m} / \mathrm{s}^{2}$
Permissible shock (11 ms)	$\leq 300 \mathrm{~m} / \mathrm{s}^{2}$

C

	Cable outlet	Cable axial (ver. A)	Cable axial - radial (ver. AR)
Singletum	L1	39	39
Multiturn	L1	55	60

For IP54 (standard)

ELECTRIGAL DATA

Resolution:
Singleturn version:

Singleturn version:	$9 \ldots 21$ bit
- with interface BiSS C	$9 \ldots 21$ bit
- with interface SSI	
Multiturn version:	$9 \ldots 21$ bit
- single turm resolution with BiSS C	$12 / 16 / 20 / 24$ bit
- multiturn resolution with BiSS C	$9 \ldots 21$ bit
- single turn resolution with SSI	$9 \ldots 40$ bit
- multiturn resolution with SSI	Gray, binary
Output code	SSI, BiSS C
Data interface	

Accuracy	± 30 arc sec
Supply voltage	$+5 \mathrm{~V} \pm 5 \%$
Light source	LED
Maximum operating frequency: - with interface BiSS C - with interface SSI	10 MHz
Cable length (standard)	4 MHz
Standard cable length	1 m
Maximum cable length	1 m, without connector

BiSS C serial interface

SSI serial interface

Note:

1. Error and parity bits should be deteminated during order.

ACCESSORIES

CONNECTORS FOR CABLE	C9	C12	D9

ORDER FORM

[^1]tion with specific interface

[^2]Please confirm configuration options before ordering or contact Customer Service for assistance.

A42M

PHOTOELECTRIC MODULAR ROTARY ENCODER

Photoelectric rotary encoder A42M is used to establish an informational link between the key machine components, industrial robots, comparators and DCC, NC or Digital Readout Units. It provides information about the value and direction of the motion.

The encoder is used in automatic control, on-line gauging, process monitoring systems, etc.

The absence of bearings and lubricants makes the encoder suitable for use in vacuum environment or when zero starting torque is required.

The encoder consists of two assemblies: rotor/hub and scanning unit.
The hub unit includes the grating disc fixed to bushing made from stainless steel.

MECHANICAL DATA

Line number on disc (z)	1000,2500 (others on request)
Number of output pulses per revolution for A42M-F	$\mathrm{Z} \times \mathrm{k}$, where $\mathrm{k}=1,2,5,10$
Max. permissible mechanical rotation speed	20000 rpm
Accuracy $\left(T_{1}\right.$. period of lines on disc in arc. sec.)	$\pm 0.1 \mathrm{~T}_{1}$ arc. sec.
Permissible axial shaft run out	0.05 mm
Hub inside diameter	$10,8,6 \mathrm{~mm}$
Rotor moment of inertia	$<22 \mathrm{gcm}^{2}$

The scanning unit includes the base made of hard anodized aluminium.

The base supports light source, reticle, photodiodes and other electronic components.

The stator of the encoder is fixed to an object by means of screws. The hub is mounted directly on the shaft.
Three versions of output signals are available:

- A42M-A - sinusoidal signals, with amplitude approx. $11 \mu \mathrm{App} ;$
- A42M-AV - sinusoidal signals, with amplitude approx. 1Vpp;
- A42M-F - square-wave signals TTL.

Protection (IEC 529)	IP00
Max. weight: - rotor assembly - scanning unit	0.022 kg
Operating temperature	0.04 kg
Storage temperature	$-10 \ldots+70^{\circ} \mathrm{C}$
Maximum humidity (non-condensing)	$-30 \ldots+85^{\circ} \mathrm{C}$
Permissible vibration $(55$ to 2000 Hz$)$	98%
Permissible shock (6 ms)	$\leq 100 \mathrm{~m} / \mathrm{s}^{2}$

ELECTRICAL DATA

VERSION	A42M-A $\sim 11 \mu \mathrm{App}$	A42M-AV $\sim 1 \mathrm{Vpp}$	A42M-F Пப TTL
Power supply	$+5 \mathrm{~V} \pm 5 \% /<80 \mathrm{~mA}$	$+5 \mathrm{~V} \pm 5 \% /<120 \mathrm{~mA}$	$+5 \mathrm{~V} \pm 5 \% /<120 \mathrm{~mA}$
Light source	LED	LED	LED
Incremental signals	Two sinusoidal I_{1} and I_{2} Amplitude at $1 \mathrm{k} \Omega$ load: $\begin{aligned} & -I_{1}=7-16 \mu \mathrm{~A} \\ & -I_{2}=7-16 \mu \mathrm{~A} \end{aligned}$	Differential sine $+\mathrm{A} /-\mathrm{A}$ and $+\mathrm{B} /-\mathrm{B}$ Amplitude at 120Ω load: $\begin{aligned} -A & =0.6-1.2 \mathrm{~V} \\ -B & =0.6-1.2 \mathrm{~V} \end{aligned}$	Differential square-wave U1/V1 and U2/ U2. Signal levels at 20 mA load current: low (logic "0") < 0.5 V - high (logic "1") > 2.4 V
Reference signal	One quasi-triangular I_{0} peak per revolution. Signal magnitude $1 \mathrm{k} \Omega$ load: $-\mathrm{I}_{0}=2-8 \mu \mathrm{~A} \text { (usable) }$	One quasi-triangular $+R$ and its complementary - R per revolution. Signals magnitude at 120Ω load - $\mathrm{R}=0.2-0.8 \mathrm{~V}$ (usable)	One differential square-wave UO/U0 per revolution. Signal levels at 20 mA load current: - low (logic "0") < 0.5 V - high (logic "1") $>2.4 \mathrm{~V}$
Maximum operating frequency	$(-3 \mathrm{~dB}) \geq 160 \mathrm{kHz}$	$(-3 \mathrm{~dB}) \geq 180 \mathrm{kHz}$	$(160 \times k) \mathrm{kHz}$, k-interpolation factor
Direction of signals	I_{2} lags I, for clockwise rotation (viewed from shaft side)	+B lags +A for clockwise rotation (viewed from shaft side)	U2 lags U1 with clockwise rotation (viewed from shaft side)
Maximum rise and fall time	-	-	$<0.5 \mu \mathrm{~s}$
Recommended max. cable length to subsequent electronics	5 m	25 m	25 m
Output signals	I_{2} I_{0}		

Note:

1. Maximum working rotation speed (with proper encoder counting) is limited by maximum operating frequency and maximum mechanical rotation speed.
2. If cable extension is used, power supply conductor cross-section should not be smaller than $0.5 \mathrm{~mm}^{2}$.

MOUNTING DIMENSIONS

PCB CONNECTOR

AC

Adapter Cable dia.
7 mm with PCB connector

ACCESSORIES

CONNECTORS FOR CABLE	B12 12-pin round connector	C9 $9-$ pin round connector	C12 12-pin round connector	$\begin{aligned} & \text { D9 } \\ & \text { 9-pin flat con- } \\ & \text { nector } \end{aligned}$	D15 15-pin flat connector	RS10 10-pin round connector	ONC 10-pin round connector
CONNECTOR FOR PCB	Adapter Cable dia. 7 mm with PCB connector						
DIGITAL READOUT DEVICES	CS3000			CS5000			
EXTERNAL INTERPOLATOR	NK						

ORDER FORM

A75M

 \section*{\title{PHOTOELECTRIC
 \section*{\title{
PHOTOELECTRIC

 MODULAR ROTARY

 MODULAR ROTARY ENCODER
}} ENCODER
}}

Photoelectric rotary encoder A75M is used to establish an informational link between the key machine components, industrial robots, comparators and DCC, NC or Digital Readout Units. It provides information about the value and direction of the motion. The encoder is used in automatic control, on-line gauging, process monitoring systems, etc.

The absence of bearings and lubricants makes the encoder suitable for use in vacuum environment or when zero starting torque is required.

The encoder consists of two assemblies: rotor/hub and scanning unit.

The hub unit includes the grating disc fixed to bushing
MECHANICAL DATA

Line number on disc (z)	512; 2048 (others on request)
Number of output pulses per revolution for A75M-F	$\begin{aligned} & Z \times k, \text { where } k=1 \text {, } \\ & 2,3,4,5,8,10 \end{aligned}$
Max. permissible mechanical rotation speed	16000 rpm
Accuracy (T_{1}. period of lines on disc in arc. sec.)	$\pm 0.1 T_{1}$ arc. sec.
Permissible axial shaft run out	$\pm 0.05 \mathrm{~mm}$

Rotor moment of inertia:

- with shaft $\varnothing 20 \mathrm{~mm}$	$26 \times 10^{-6} \mathrm{kgm}^{2}$
- with shaft $\varnothing 30 \mathrm{~mm}$	$35 \times 10^{-6} \mathrm{kgm}^{2}$

$35 \times 10^{-6} \mathrm{kgm}^{2}$
made from stainless steel.
The scanning unit includes the base made of hard anodized aluminium.

The base supports light source, reticle, photodiodes and other electronic components.

The stator of the encoder is mounted to an object by means of screws. The hub is mounted directly on the shaft.

Two versions of output signals are available:

- A75M-AV - sinusoidal signals, with amplitude approx. 1Vpp;
- A75M-F - square-wave signals TTL.

Protection (IEC 529)	IP00
Max. weight	0.2 kg
Operating temperature	$0 \ldots+85^{\circ} \mathrm{C}$
Storage temperature	$-30 \ldots+85^{\circ} \mathrm{C}$
Maximum humidity (non-condensing)	98%
Permissible vibration (55 to 2000 Hz$)$	$\leq 100 \mathrm{~m} / \mathrm{s}^{2}$
Permissible shock (6 ms)	$\leq 1000 \mathrm{~m} / \mathrm{s}^{2}$

[^3]
ELECTRIGAL DATA

VERSION	A75M-AV $\sim 1 V$ App	A75M-F ПTTL
Power supply	$+5 \mathrm{~V} \pm 5 \% /<120 \mathrm{~mA}$	$+5 \mathrm{~V} \pm 5 \% /<120 \mathrm{~mA}$
Light source	LED	LED
Incremental signals	Differential sine $+\mathrm{A} /-\mathrm{A}$ and $+\mathrm{B} /-\mathrm{B}$ Amplitude at 120Ω load: $\begin{aligned} -A & =0.6-1.2 \mathrm{~V} \\ -B & =0.6-1.2 \mathrm{~V} \end{aligned}$	Differential square-wave U1/V1 and U2/V2. Signal levels at 20 mA load current: - low (logic "0") $\leq 0.5 \mathrm{~V}$ - high (logic "1") $\geq 2.4 \mathrm{~V}$
Reference signal	One quasi-triangular +R and its complimentary -R per revolution. Signal magnitude at 120Ω load: $-\mathrm{R}=0.2 \ldots 0.8 \mathrm{~V} \text { (usable) }$	One differential square-wave UO/VO per revolution. Signal levels at 20 mA load current: - low (logic "0") $\leq 0.5 \mathrm{~V}$ - high $($ logic " 1 " $) \geq 2.4 \mathrm{~V}$
Maximum operating frequency	$(-3 \mathrm{~dB}) \geq 180 \mathrm{kHz}$	$(160 \times \mathrm{k}) \mathrm{kHz}$, k - interpolation factor
Direction of signals	+B lags +A for clockwise rotation (viewed from shaft side)	U2 lags U1 for clockwise rotation (viewed from shaft side)
Maximum rise and fall time	-	$<0.5 \mu \mathrm{~s}$
Recommended max. cable length to subsequent electronics	25 m	25 m
Output signals		

Note:

1. Maximum working rotation speed (with proper encoder counting) is limited by maximum operating frequency and maximum mechanical rotation speed.
2. If cable extension is used, power supply conductor cross-section should not be smaller than $0.5 \mathrm{~mm}^{2}$.

MOUNTING DIMENSIONS

PCB CONNECTOR

AC

Adapter cable dia. 6 mm with PCB connector

ACCESSORIES

CONNECTORS FOR CABLE	B12 12-pin round connector	C12 12-pin round connector	D9 9-pin flat connector	D15 15-pin flat connector	RS10 10-pin round connector	ONC 10-pin round connector
CONNECTOR FOR PCB	Adapter Cable dia. 6 mm with PCB connector					
DIGITAL READOUT DEVICES	CS3000			CS5000		

ORDER FORM

AK50

PHOTOELECTRIC ABSOLUTE ROTARY ENCODER

Absolute single turn rotary encoder AK50 is designed to be used in rotary tool changers, it features 8 bit gray or binary code outputs with arbitrary zero position, direction and resolution selection (set via switches), diagnostic facilities (status LED).

Encoder has the following features:
Ability to set arbitrary reference position (accessible via switch).

MECHANIGAL DATA

Maximum shaft speed without counting loss for 8 bit	3000 rpm
Maximum shaft load: - axial - radial (at shaft end)	80 N
Starting torque at $20^{\circ} \mathrm{C}$	100 N
Rotor moment of inertia	3 Ncm
Protection (IEC 529): - housing - shaft	$20 \mathrm{gcm}^{2}$

User selectable number of indexed positions accessible via switch (example: when used in a tool turret with different number of tools) with maximum of 256.

Following diagnostic facilities are provided via two bicolour LEDs:

1. Power supply failure
2. Internal failure (illumination failure, parity error)
3. Reference position indication

Maximum weight without cable	0.3 kg
Operating temperature	$-20 \ldots+80^{\circ} \mathrm{C}$
Storage temperature	$-30 \ldots+90^{\circ} \mathrm{C}$
Maximum humidity (non-condensing)	98%
Permissible vibration (55 to 2000 Hz)	$\leq 100 \mathrm{~m} / \mathrm{s}^{2}$
Permissible shock (11 ms)	$\leq 1000 \mathrm{~m} / \mathrm{s}^{2}$

ELECTRICAL DATA

Accuracy	± 120 arc. sec
Resolutio	$2^{8}(256)$
Code:	Gray, Binary, Other (custom)
Output signals interface	Parallel
Light source	LED
Supply voltage: - standard - optional	$+24(8 \ldots 25) \mathrm{V} \pm 5 \%$
Maximum supply current	50 mA
Output signal levels	$\mathrm{TL} / \mathrm{HTL}$
Maximum cable length	25 m

Switches position depending on tool number in tool changer

Tool number in tool changer	Switch P1 position	Switch P2 position
8	0	0
12	0	1
16	1	0
24	1	1

Encoder code full truth table (24 positions)

Function	Indexing position of turret																							
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Strobe	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1 Bit	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0
2 Bit	-	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0
3 Bit	-	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0
4 Bit	-	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1
5 Bit	\bigcirc	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1
Parity-check	1	1	0	1	0	0	1	1	0	0	1	0	1	1	0	1	0	0	1	0	1	1	0	0

ACCESSORIES

CONNECTORS FOR CABLE	B12 12-pin round connector	C9 9-pin round connector	C12 12-pin round connector	D9 9-pin flat connector	D15 15-pin flat connector	RS10 10-pin round connector	ONC connector conne round

ORDER FORM

AK50 - X -	XXXXX $-X-X-X X X X-X$						
CONFIGURATION TYPE:	NUMBER OF POSITIONS:	(OR) NUMMBER OF BITS:	OUTPUT CODE:	SUPPLY VOLTAGE:	CABLE LENGTH:	CONNECTOR TYPE:	COUPLING:
$\begin{aligned} & \text { P- POSTIION } \\ & \text { NUMBER } \\ & \text { B - BT NUMBER } \end{aligned}$	$\begin{aligned} & 2 \\ & \dddot{2} 56 \end{aligned}$ *only for AK50-P	$\begin{gathered} 1 \\ 2 \\ \dddot{8} \end{gathered}$ *only for AK50-F	G - gray B - binary O- other	$\begin{aligned} & 05 \mathrm{~V}-+5 \mathrm{~V} \\ & 24 \mathrm{~V}-+(8 \ldots 25) \mathrm{V} \end{aligned}$	AR01 - 1 m ARO2 - 2 m ARO3 - 3m	W - without connector B12 - round, 12 pins C9 -round, 9 pins C12 - round, 12 pins D9 - flat, 9 pins D15-flat, 15 pins RS10 - round, 10 pins ONC - round, 10 pi	0 - without 1 - with coupling
ORDER EXAMPLES:	1) $A K 50-P-8 / 12$ 2) $\mathrm{AK} 50-\mathrm{B}-8-\mathrm{G}-0$ 3) AK50-P-16/3 4) $\mathrm{AK} 50-\mathrm{B}-5 / 6 / 8$	4-G-24V-AR01N-1 RO2N-0 5V-AR12/C12-0 4V-AR06/W-1					

A58M, A58B, A58C, A58C2,
A58C3, A58D
A58

PHOTOELECTRIC ROTARY ENCODER

HD

The photoelectric rotary encoder A58 is used to establish an informational link between the key machine components, industrial robots, comparators and DCC, NC or Digital Readout Units. It provides information about the value and direction of the motion. The encoder is used in automatic control, on-line gauging, process monitoring systems, etc.

MECHANICAL DATA

Line number on disc (z)	100; 250; 500; 600;
	$800 ; 1000 ; 1024 ;$
	$1125 ; 1250 ; 1500 ;$
	2000; 2048; 2500;
	$3000 ; 3600 ; 4000 ;$
	$5000 ; 9000 ; 10800$
Pulse number per shaft revolution for A58-F	Z x k , where k=1,2,3,4,5,8,10
Maximum shaft speed	12000 rpm
Maximum shaft load:	
- axial	
- radial (at shaft end)	40 N

Three versions of output signals are available:

- A - sinusoidal signals, with amplitude approx. 11 $\mu A p p ;$
- AV - sinusoidal signals, with amplitude approx. 1 Vpp;
- F - square-wave signals TTL or HTL.

Accuracy $\left(T_{1}\right.$-period of lines on disc in arc. sec)	$\pm 0.1 \mathrm{~T}_{1}$ arc. sec
Starting torque at $20^{\circ} \mathrm{C}$	$\leq 0.01 \mathrm{Nm}$
Rotor moment of inertia	$<15 \mathrm{gcm}^{2}$
Protection (IEC 529)	IP64
Maximum weight without cable	0.25 kg
Operating temperature	$-10 \ldots+70^{\circ} \mathrm{C}$
Storage temperature	$-30 \ldots+80^{\circ} \mathrm{C}$
Maximum humidity (non-condensing)	98%
Permissible vibration $(55 \mathrm{to} 2000 \mathrm{~Hz})$	$\leq 100 \mathrm{~m} / \mathrm{s}^{2}$
Permissible shock $(11 \mathrm{~ms})$	$\leq 1000 \mathrm{~m} / \mathrm{s}^{2}$

A58M

A58B

A58C

A58C2

A58C3

A58D

$6 \mathrm{~mm} \quad 9 \mathrm{~mm}$
$22 \mathrm{~mm} \quad 16 \mathrm{~mm}$

ELECTRICAL DATA

VERSION	A58-A $\sim \mathbf{1 1} \boldsymbol{\mu} \mathbf{A p p}$
Supply voltage (Up)	$+5 \mathrm{~V} \pm 5 \%$
Max. supply current (without load)	80 mA
Light source	LED
Incremental signals	Two sinusoidal $I_{\text {a }}$ and I_{2} Amplitude at $1 \mathrm{k} \Omega$ load: $-I_{1}=7-16 \mu \mathrm{~A}$ $-\mathrm{I}_{2}=7-16 \mu \mathrm{~A}$
Reference signal	One quasi-triangular I_{0} peak per revolu- tion. Signal magnitude at $1 \mathrm{k} \Omega$ load: $-I_{0}=2-8 \mu \mathrm{~A}$ (usable component)

Maximum operating frequency	$(-3 \mathrm{~dB}) \geq 160 \mathrm{kHz}$
Direction of signals	I_{2} lags I_{1}, for clockwise rotation (viewed from shaft side)
Maximum rise and fall time	-
Standard cable length	1 m, without connector
Maximum cable length	5 m

A58-AV $\sim 1 \mathrm{Vpp}$

$+5 \mathrm{~V} \pm 5 \%$
120 mA

A58-F П TTL; П HTL
$+5 \mathrm{~V} \pm 5 \%$; + (10 to 30) V
120 mA
LED
Differential square-wave U1/ $\overline{\mathrm{U} 1}$ and U2/U2 Signal levels at 20 mA load current:
low (logic " 0 ") $\leq 0.5 \mathrm{~V}$ at $U_{p}=+5 \mathrm{~V}$
low (logic " 0 ") $\leq 1.5 \mathrm{~V}$ at $\mathrm{U}_{\mathrm{p}}=10$ to 30 V
high (logic "1") $\geq 2.4 \mathrm{~V}$ at $\mathrm{U}_{\mathrm{p}}=+5 \mathrm{~V}$
high (logic " 1 ") $\geq\left(U_{p}-2\right) \vee$ at $U_{p}=10$ to 30 V
One quasi-triangular $+R$ and its complementary -R per revolution. Signals magnitude at 120Ω load
$-\mathrm{R}=0.2-0.8 \mathrm{~V}$ (usable component)
One differential square-wave UO/UO per revolution. Signal levels at 20 mA load current:

- low (logic " 0 ") $<0.5 \mathrm{~V}$ at $\mathrm{U}_{\mathrm{P}}=+5 \mathrm{~V}$
- low (logic "O") < 1.5 V at $\mathrm{U}_{\mathrm{p}}=10$ to 30 V
- high (logic " 1 ") $>2.4 \mathrm{~V}$ at $\cup_{p}=+5 \mathrm{~V}$
- high (logic "1") $>\left(U_{p}-2\right)$ V at $U_{p}=10$ to 30 V
$(160 \times k)$ KHz, k-interpolation factor
U2 lags U1 with clockwise rotation (viewed from shaft side)
$<0.5 \mu \mathrm{~s}$
1 m , without connector
25 m

Note:

1. Maximum working rotation speed (with proper encoder counting) is limited by maximum operating frequency and maximum mechanical rotation speed.
2. If cable extension is used, power supply conductor cross-section should not be smaller than $0.5 \mathrm{~mm}^{2}$.

ACCESSORIES

| CONNECTORS FOR CABLE | B12
 12-pin round
 connector | C9
 9-pin round
 connector | C12
 12-pin round
 connector | D9
 9-pin flat
 connector | D15
 15-pin flat
 connector | RS10
 10-pin round
 connector | ONC
 10-pin round
 connector |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| CONNECTORS ON HOUSING | C9
 9-pin round connector | C12
 12-pin round connector | RS10
 $10-$-pin round connector | ONC
 $10-$ pin round
 connector | | | |

| DIGITAL READOUT DEVICES | CS3000 | CS5000 |
| :--- | :---: | :---: | :---: |
| COUPLING | | SC30 |
| EXTERNAL INTERPOLATOR | NK | |

ORDER FORM

PHOTOELECTRIC ABSOLUTE ROTARY ENCODER

Absolute singleturn and multiturn (battery buffered) solid shaft rotary encoders are used for generation of coded output signals which provide information about controlled object absolute position.
In singleturn version rotary encoder AK58 has resolution from 9 up to 21 bit per revolution. Output signals interface is BiSS C or SSI. Operating principle is photoelectrical.

In multiturn version AK58 has singleturn resolution from 9 up to 21 bit per revolution with 12/16/20/24 bit resolution
of multiturn counter on BiSS C interface. With SSI interface the encoder AK58 has resolution from 9 up to 21 bit per revolution with 9 up to 40 bit resolution of multiturn counter. Battery is placed inside of encoder. Operating principle is photoelectrical and magnetic.
Absolute encoder is intended to use in robotics industry, automated and automatizated lines in industry, control devices of equipment and machines, various control systems, precise machine tools and others.

MECHANICAL DATA

$\left.\begin{array}{|l|l|}\hline \text { Maximum shaft speed } & 12000 \mathrm{rpm} \\ \hline \text { Maximum shaft load: } & \\ \hline \text { - axial } & 10 \mathrm{~N}(40 \mathrm{~N} \text { for AK58C2, } \\ \text { - radial (at shaft end) } & \begin{array}{l}\text { AK58C3, AK58D) } \\ \\ \hline\end{array} \\ \hline \text { AK N (60 N for AK58C2, AK58D) }\end{array}\right]$

Protection (IEC 529):	IP65
Maximum weight without cable	0.3 kg
Operating temperature	$-10 \ldots+70^{\circ} \mathrm{C}$
Storage temperature	$-30 \ldots+80^{\circ} \mathrm{C}$
Maximum humidity (non-condensing)	98%
Permissible vibration (55 to 2000 Hz)	$\leq 100 \mathrm{~m} / \mathrm{s}^{2}$
Permissible shock (11 ms)	$\leq 1000 \mathrm{~m} / \mathrm{s}^{2}$

AK58M

PRECIZIKA
metrology

AK58B

AK58C

AK58C2

	Connector type / cable outlet	ONC axial	PC10 axial	C12, C9 axial	ONC radial	PC10 radial	C12, C9 radial	Cable axial (ver. A)	Cable radial (ver. R)	Cable axial-radial (ver. AR)
Singletur	L1	44.5 mm	44.5 mm	44.5 mm	no	56.5 mm	56.5 mm	44.5 mm	44.5 mm	46.5 mm
Multium	L3	$67,5 \mathrm{~mm}$	$67,5 \mathrm{~mm}$	$67,5 \mathrm{~mm}$	no	79,5 mm	79,5 mm	$67,5 \mathrm{~mm}$	$67,5 \mathrm{~mm}$	69,5 mm
Singleturn/multiturn	L2	16 mm	9 mm	22 mm	16 mm	9 mm	22 mm	12 mm	12 mm	-
Singletur/multiturn	L3	M24	M14	M23	M24	M14	M23	-	-	

AK58C3

AK58D

	Connector type / cable outlet	ONC axial	PC10 axial	C12, C9 axial	ONC radial	PC10 radial	C12, C9 radial	Cable axial (ver. A)	Cable radial (ver. R)	Cable axial-radial (ver. AR)
Singleturn	L1	37.5 mm	37.5 mm	37.5 mm	no	49.5 mm	49.5 mm	37.5 mm	37.5 mm	39.5 mm
Multium	L3	$60,5 \mathrm{~mm}$	$60,5 \mathrm{~mm}$	$60,5 \mathrm{~mm}$	no	$72,5 \mathrm{~mm}$	$72,5 \mathrm{~mm}$	$60,5 \mathrm{~mm}$	$60,5 \mathrm{~mm}$	$62,5 \mathrm{~mm}$
Singleturn/multitum	L2	16 mm	9 mm	22 mm	16 mm	9 mm	22 mm	12 mm	12 mm	-
Singleturn/multitum	L3	M24	M14	M23	M24	M14	M23	-	-	-

ELECTRIGAL DATA

Resolution:

Singleturn version:

- with interface BiSS C
- with interface SSI

Multiturn version:

- single turn resolution with BiSS C
- multiturn resolution with BiSS C
- single turn resolution with SSI
- multiturn resolution with SSI

Output code
9... 21 bit

12/16/20/24 bit
9 ... 21 bit
9... 21 bit
9... 21 bit

9 ... 40 bit
Gray, binary

Data interface	SSI, BiSS C
Accuracy	± 30 arc sec
Supply voltage	$5 \mathrm{~V} \pm 5 \%$
Light source	LED
Maximum operating frequency	
- with interface BiSS C	10 MHz
- with interface SSI	4 MHz
Cable length (standard)	1 m, without connector
Maximum cable length	25 m

SSI timing diagram

Interface	SSI Binary - Gray
Signals level	EIA RS 485
Clock frequency	$62,5 \mathrm{kHz} \div 4 \mathrm{MHz}$
n	Position bit
TTD	$3,28 \mathrm{~ms} \div 1,2 \mathrm{~ns}$

BiSS timing diagram

Interface	BiSS C unidirectional
Signals level	EIA RS 485
Clock frequency	$62,5 \mathrm{kHz} \div 10 \mathrm{MHz}$
n bit	$(9 \div 20)+2+6$
TTD	$3,28 \mathrm{~ms} \div 100 \mathrm{~ns}$

ACCESSORIES

| CONNECTORS FOR CABLE | B12
 12-pin round
 connector | C9
 9-pin round
 connector | C12
 12-pin round
 connector | D9
 9-pin flat
 connector | D15
 15-pin flat
 connector | RS10
 10-pin round
 connector | ONC
 10-pin round
 connector |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| CONNECTORS ON HOUSING | C9
 9-pin round connector | C12
 12-pin round connector | RS10
 10-pin round connector | ONC
 $10-$ 10in round
 connector | | | |

COUPLING

ORDER FORM

[^4]
PROGRAMMABLE PHOTOELECTRIC INCREMENTAL ROTARY ENCODER

The programmable photoelectric incremental rotary encoder AP58 is used to establish an informational link between the key machine components, industrial robots, comparators and NC or DRO units.
The encoder is used in automatic control, on-line gauging, process monitoring systems, etc.
The AP58 programmable incremental encoder can be programmed to set desired pulse number per revolution from 1 to 65536. This function makes it an universal in-

MECHANIGAL DATA

Pulse number per shaft revolution	from 1 to 65536
Maximum shaft speed: Maximum shaft load: - axial - radial (at shaft end)	12000 rpm
Accuracy (T1-period of lines on disc in arc. sec.)	$\pm 0.1 \mathrm{~T}_{1}$ arc. sec
Starting torque at $20^{\circ} \mathrm{C}$	$\leq 0.01 \mathrm{Nm}$
Rotor moment of inertia	$<15 \mathrm{gcm}$
Protection (IEC 529)	IP 64

cremental encoder that perfectly suits specific needs in many applications and machines.

The programming tool consists of a USB cable and Windows compatible software.
The program is supplied for free and can be found on Precizika Metrology web-site and installed in any PC fitted with a Windows operating system (Windows XP or later).

Maximum weight without cable	0.25 kg
Operating temperature	$-10 \ldots+70^{\circ} \mathrm{C}$
Storage temperature	$-30 \ldots+80^{\circ} \mathrm{C}$
Maximum humidity (non-condensing)	98%
Permissible vibration (55 to 2000 Hz$)$	$\leq 100 \mathrm{~m} / \mathrm{s}^{2}$
Permissible shock $(11 \mathrm{~ms})$	$\leq 1000 \mathrm{~m} / \mathrm{s}^{2}$

Encoder type	L1	Other dimensions
A58M	45 mm	See A58 series data sheet
A58B	$48,5 \mathrm{~mm}$	See A58 series data sheet
A58C	51 mm	See A58 series data sheet
A58C2	$48,5 \mathrm{~mm}$	See A58 series data sheet
A58C3	54 mm	See A58 series data sheet
A58D	$41,5 \mathrm{~mm}$	See A58 series data sheet

SOFTWARE

1. List of encoders connected for multi-programming
2. Number of Cycles Per Revolution (CPR) in the drop-down menu
3. Number of lines Per Revolution (LPR) in the drop-down menu
4. Program the encoder according to desired parameters
5. Current operation status indication field

ELECTRIGAL DATA

VERSION	AP58-F П TTL; П HTL
Power supply - Max. supply current (without load)	$+5 \mathrm{~V} \pm 5 \%$; $+(10$ to 30$) \mathrm{V}$
Light source	LED
Incremental signals	Differential square-wave U1/ण1 and U2/U2. Signal levels at 20 mA load current: - low (logic " 0 ") $<0.5 \mathrm{~V}$ at $U_{\mathrm{p}}=+5 \mathrm{~V}$ - low (logic " 0 ") $<1.5 \mathrm{~V}$ at $U_{\mathrm{P}}=10$ to 30 V - high (logic " 1 ") $>2.4 \mathrm{~V}$ at $\mathrm{U}_{\mathrm{p}}=+5 \mathrm{~V}$ - high (logic "1") $>\left(\right.$ UP-2) \vee at $U_{P}=10$ to 30 V
Reference signal	One differential square-wave UO/VO per revolution.
Maximum operating frequency	$<2 \mathrm{MHz}$
Direction of signals	U2 lags U1 for clockwise rotation (viewed from shaft side)
Maximum rise and fall time	< 0.5 ¢
Standard cable length	1 m , without connector
Maximum cable length	25 m
Output signals	

Note:

1. Maximum working rotation speed (with proper encoder counting) is limited by maximum operating frequency and maximum mechanical rotation speed.
2. If cable extension is used, power supply conductor cross-section should not be smaller than $0.5 \mathrm{~mm}^{2}$.

ACCESSORIES

CONNECTORS FOR CABLE	B12 12-pin round connector	C12 12-pin round connector	D9 9-pin flat con- nector	D15 15-pin flat connector	RS10 10-pin round connector	ONC 10-pin round connector
COUPLING						

ORDER FORM

A58H

PHOTOELECTRIC ROTARY ENCODER

The encoder A58H is used to measure angular position of the key machine components, industrial robots, comparators, rotary tables, servo drives and to establish an informational link with DCC, NC or Digital Readout Units.

The encoder has integrated stator coupling so it can be fixed directly onto shaft. Mounting adapter is available on request.

The encoder is used in automatic control, on-line gauging, process monitoring systems, etc.

The case of encoder is mounted via four screws M3 or through adapter.

MECHANICAL DATA

Line number on disc (z)	$\begin{aligned} & 100 ; 250 ; 500 ; \\ & 600 ; 800 ; 1000 ; \\ & 1024 ; 1125 ; 1250 ; \\ & 1500 ; 2000 ; 2048 ; \\ & 2500 ; 3000 ; 3600 ; \\ & 4000 ; 5000 ; 9000 ; \\ & 10800 \end{aligned}$
Pulse number per shaft revolution for A58M-F	$\begin{aligned} & \text { Z x k, where } \\ & \mathrm{k}=1,2,3,4,5,8,10 \end{aligned}$
Maximum shaft speed	10000 rpm
Permissible motion of shaft: - axial - radial (at shaft end)	$\begin{aligned} & \pm 0.03 \mathrm{~mm} \\ & 0.05 \mathrm{~mm} \end{aligned}$
Accuracy (T_{1}-period of lines on disc in arc. sec) - on option for z < 5000 - on option for z > 5000	$\begin{aligned} & \pm 0.1 \mathrm{~T}_{1} \text { arc. sec } \\ & \pm 0.05 \mathrm{~T}_{1} \text { arc. sec } \\ & \pm 12.0 \text { arc. sec } \end{aligned}$

Encoder is coupled via sleeve coupling, backing screws are provided on both sides of the coupling.
Three versions of output signals are available:

- A58H-A - sinusoidal signals, with amplitude approx. $11 \mu \mathrm{App}$;
- A58H-AV - sinusoidal signals, with amplitude approx. 1 Vpp;
- A58H-F - square-wave signals (TTL) with integrated subdividing electronics for interpolation $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3$, x4, x5, x8, x10.

Starting torque at $20^{\circ} \mathrm{C}$	$\leq 0.025 \mathrm{Nm}$
Rotor moment of inertia	$<1.5 \times 10^{-4} \mathrm{kgm}^{2}$
Protection (housing) (IEC 529)	IP64
Protection (shaft side) (IEC 529)	IP64
Maximum weight without cable	0.35 kg
Operating temperature	$-10 \ldots+70^{\circ} \mathrm{C}$
Storage temperature	$-30 \ldots+80^{\circ} \mathrm{C}$
Maximum humidity (non-condensing)	98%
Permissible vibration (55 to 2000 Hz)	$\leq 100 \mathrm{~m} / \mathrm{s}^{2}$
Permissible shock (11 ms)	$\leq 300 \mathrm{~m} / \mathrm{s}^{2}$

Encoder without adapter

ELECTRICAL DATA

VERSION	A58H-A $\sim 11 \mu$ App	A58H-AV $\sim 1 \mathrm{Vpp}$	A58H-F П TTL; Пل HTL
Supply voltage (U_{p})	$+5 \mathrm{~V} \pm 5 \%$	$+5 \mathrm{~V} \pm 5 \%$	$+5 \mathrm{~V} \pm 5 \%$; + (10 to 30) V
Max. supply current (without load)	80 mA	120 mA	120 mA
Light source Incremental signals	LED Two sinusoidal I, and I, Amplitude at $1 \mathrm{k} \Omega$ load: $-11=7-16 \mu \mathrm{~A}$ $-12=7-16 \mu \mathrm{~A}$	LED Differential sine $+\mathrm{A}-\mathrm{A}$ and $+\mathrm{B} /-\mathrm{B}$ Amplitude at 120Ω load: $\begin{aligned} & -A=0.6-1.2 \mathrm{~V} \\ & -B=0.6-1.2 \mathrm{~V} \end{aligned}$	LED Differential square-wave $\mathrm{U} 1 / \overline{\mathrm{U} 1}$ and $\mathrm{U} 2 / \overline{\mathrm{U} 2}$. Signal levels at 20 mA load current: - low (logic "0") $\leq 0.5 \mathrm{~V}$ at $U_{p}=+5 \mathrm{~V}$ - low (logic "0") $\leq 1.5 \mathrm{~V}$ at $\mathrm{U}_{\mathrm{P}}=10$ to 30 V - high (logic " 1 " 1) $\geq 2.4 \mathrm{~V}$ at $\mathrm{U}_{\mathrm{p}}=+5 \mathrm{~V}$ - high (logic "1") $\geq\left(U_{P}-2\right) \vee$ at $\cup_{p}=10$ to 30 V
Reference signal	One quasi-triangular I peak per revolution. Signal magnitude at $1 \mathrm{k} \Omega$ load: $-I_{0}=2-8 \mu \mathrm{~A}$ (usable component)	One quasi-triangular +R and its complementary -R per revolution. Signals magnitude at 120Ω load - R = 0.2-0.8 V (usable component)	One differential square-wave UO/UO per revolution. Signal levels at 20 mA load current: - low (logic "0") $<0.5 \mathrm{~V}$ at $U_{\mathrm{P}}=+5 \mathrm{~V}$ - low (logic "0") $<1.5 \mathrm{~V}$ at $\cup_{\mathrm{P}}^{\mathrm{P}}=10$ to 30 V - high (logic " 1 ") $)>2.4 \mathrm{~V}$ at $U_{D}=+5 \mathrm{~V}$ - high (logic "1") $>\left(U_{P}-2\right) \vee$ at $U_{P}=10$ to 30 V
Maximum operating frequency	$(-3 \mathrm{~dB}) \geq 160 \mathrm{kHz}$	$(-3 \mathrm{~dB}) \geq 180 \mathrm{kHz}$	$(160 \times k) \mathrm{kHz}$, k-interpolation factor
Direction of signals	I lags I for clockwise rotation (viewed from shaft side)	+B lags +A for clockwise rotation (viewed from shaft side)	U2 lags U1 with clockwise rotation (viewed from shaft side)
Maximum rise and fall time	-	-	$<0.5 \mu \mathrm{~s}$
Standard cable length	1 m , without connector	1 m , without connector	1 m , without connector
Maximum cable length	5 m	25 m	25 m
Output signals			

1. Maximum working rotation speed (with proper encoder counting) is limited by maximum operating frequency and maximum mechanical rotation speed.
2. If cable extension is used, power supply conductor cross-section should not be smaller than $0.5 \mathrm{~mm}^{2}$.

MOUNTING REQUIREMENTS

ACCESSORIES

CONNECTORS FOR CABLE	B12 12-pin round connector	C9 9-pin round connector	C12 12-pin round connector	D9 9-pin flat connector	D15 15-pin flat connector	RS10 10-pin round connector	ONC 10-pin round connector
DIGITAL READOUT DEVICES	CS3000			CS5000			
EXTERNAL INTERPOLATOR				NK			

ORDER FORM

PHOTOELECTRIC ROTARY ENCODER

The encoder A 58 H 1 is used to measure angular position of the key machine components, industrial robots, comparators, rotary tables, servo drives and to establish an informational link with DCC, NC or Digital Readout Units. The encoder has external flexible coupling.

The encoder is used in automatic control, on-line gauging, process monitoring systems, etc.

MECHANIGAL DATA

Line number on disc (z)	$100 ; 250 ; 500 ;$
	$600 ; 800 ; 1000 ;$
	$1024 ; 1125 ; 1250 ;$
	$1500 ; 2000 ; 2048 ;$
	2500; 3000; 3600;
	$4000 ; 5000 ; 9000 ;$
	10800
Pulse number per shaft revolution for A58H1-F	Z x k, where k=1,2,3,4,5,8,10
Maximum shaft speed	10000 rpm
Permissible motion of shaft:	
\quad - axial	$\pm 0.03 \mathrm{~mm}$
- radial (at shaft end)	0.05 mm
Accuracy $\left(\mathrm{T}_{1}\right.$-period of lines on disc in arc. sec)	$\pm 0.1 \mathrm{~T}_{1} \mathrm{arc} . \mathrm{sec}$
Starting torque at $20^{\circ} \mathrm{C}$	$\leq 0.025 \mathrm{Nm}$

Three versions of output signals are available:

- A58H1-A - sinusoidal signals, with amplitude approx. $11 \mu \mathrm{App}$;
- A58H1-AV - sinusoidal signals, with amplitude approx. 1 Vpp;
- A58H1-F - square-wave signals (TTL) with integrated subdividing electronics for interpolation $\times 1, \times 2$, $x 3, x 4, x 5, x 8, x 10$.

Rotor moment of inertia	$<1.5 \times 10^{-4} \mathrm{kgm}^{2}$
Protection (housing) (IEC 529)	IP64
Protection (shaft side) (IEC 529)	IP64
Maximum weight without cable	0.3 kg
Operating temperature	$-10 \ldots+70^{\circ} \mathrm{C}$
Storage temperature	$-30 \ldots+80^{\circ} \mathrm{C}$
Maximum humidity (non-condensing)	98%
Permissible vibration (55 to 2000 Hz)	$\leq 100 \mathrm{~m} / \mathrm{s}^{2}$
Permissible shock (11 ms)	$\leq 300 \mathrm{~m} / \mathrm{s}^{2}$

Protective cover remove for long shafts

[^5]*For one side fixation from encoder flange side

ELECTRICAL DATA

VERSION	A58H1-A $\sim 11 \mu$ App	A58H1-AV $\sim 1 \mathrm{Vpp}$	A58H1-F ПTTL; ПHTL
Supply voltage (U_{p})	$+5 \mathrm{~V} \pm 5 \%$	$+5 \mathrm{~V} \pm 5 \%$	$+5 \mathrm{~V} \pm 5 \%$; +(10 to 30) V
Max. supply current (without load)	80 mA	120 mA	120 mA
Light source Incremental signals	LED Two sinusoidal I_{1} and I_{2} Amplitude at $1 \mathrm{k} \Omega$ load: $\begin{aligned} & -11=7-16 \mu \mathrm{~A} \\ & -12=7-16 \mu \mathrm{~A} \end{aligned}$	LED Differential sine $+\mathrm{A}-\mathrm{A}$ and $+\mathrm{B} /-\mathrm{B}$ Amplitude at 120Ω load: $\begin{aligned} & -\mathrm{A}=0.6-1.2 \mathrm{~V} \\ & -\mathrm{B}=0.6-1.2 \mathrm{~V} \end{aligned}$	LED Differential square-wave U1/U1 and U2/ $\overline{\mathrm{U} 2}$. Signal levels at 20 mA load current: - low (logic "O") $\leq 0.5 \mathrm{~V}$ at $U_{p}=+5 \mathrm{~V}$ - low (logic " 0 ") $\leq 1.5 \mathrm{~V}$ at $U_{P}^{P}=10$ to 30 V - high (logic "1") $\geq 2.4 \mathrm{~V}$ at $\mathrm{U}_{p}=+5 \mathrm{~V}$ - high (logic "1") $\geq\left(\cup_{P}-2\right) \vee$ at $U_{P}=10$ to 30 V
Reference signal	One quasi-triangular I ${ }_{0}$ peak per revolution. Signal magnitude at $1 \mathrm{k} \Omega$ load: $-I_{0}=2-8 \mu \mathrm{~A}$ (usable component)	One quasi-triangular +R and its complementary -R per revolution. Signals magnitude at 120Ω load - $\mathrm{R}=0.2-0.8 \mathrm{~V}$ (usable component)	One differential square-wave UO/UO per revo- lution. Signal levels at 20 mA load current: - low (logic " 0 ") $<0.5 \mathrm{~V}$ at $\mathrm{U}_{\mathrm{p}}=+5 \mathrm{~V}$ - low (logic "O") $<1.5 \mathrm{~V}$ at $\mathrm{U}_{\mathrm{p}}^{P}=10$ to 30 V - high (logic " 1 ") $>2.4 \mathrm{~V}$ at $U_{p}=+5 \mathrm{~V}$ - high (logic "1") $>\left(U_{P}-2\right)$ Vat $U_{p}=10$ to 30 V
Maximum operating frequency	$(-3 \mathrm{~dB}) \geq 160 \mathrm{kHz}$	$(-3 \mathrm{~dB}) \geq 180 \mathrm{kHz}$	$(160 \times k) \mathrm{kHz}$, K-interpolation factor
Direction of signals	I. lags I for clockwise rotation (viewed from shaft side)	+B lags +A for clockwise rotation (viewed from shaft side)	U2 lags U1 with clockwise rotation (viewed from shaft side)
Maximum rise and fall time	-	-	$<0.5 \mu \mathrm{~s}$
Standard cable length	1 m , without connector	1 m , without connector	1 m , without connector
Maximum cable length	$5 \mathrm{~m}$	$25 \text { m }$	25 m
Output signals			

1. Maximum working rotation speed (with proper encoder counting) is limited by maximum operating frequency and maximum mechanica rotation speed.
2. If cable extension is used, power supply conductor cross-section should not be smaller than $0.5 \mathrm{~mm}^{2}$.

MOUNTING REQUIREMENTS

ACCESSORIES

CONNECTORS FOR CABLE	B12 12-pin round connector	C9 9-pin round connector	C12 12-pin round connector	D9 9-pin flat connector	D15 15-pin flat connector	RS10 10-pin round connector	ONC 10-pin round connector
DIGITAL READOUT DEVICES	CS3000			CS5000			
EXTERNAL INTERPOLATOR	NK						

ORDER FORM

A58H1 - XX	$X X X X \quad-X X-X$	- XXX			
OUTPUT SIGNAL VERSION:	PULSE NUMBER PER REVOLUTION:	SHAFT HOLE DIAMETER:	SUPPLY VOLTAGE:	CABLE LENGTH:	CONNECTOR TYPE:
$\begin{aligned} & \text { A } \\ & \text { AV } \\ & \text { F } \end{aligned}$	$\begin{aligned} & 1 \ldots 100 \\ & \ldots . . .108000 \end{aligned}$	6, 8, 10, 12,14* mm *with additional hub for shaft mounting, for one side fixation from flange side	$\begin{aligned} & 05 \mathrm{~V}-+5 \mathrm{~V} \\ & 30 \mathrm{~V}-+(10 \text { to } 30) \mathrm{V}^{*} \end{aligned}$ *only for A58H-F with HTL output	ARO1-1m ARO2 - 2 m ARO3 - 3 m	W - without connector B12 - round, 12 pins C9-round, 9 pins C12 - round, 12 pins D9 - flat, 9 pins D15- flat, 15 pins RS10 - round, 10 pins ONC - round, 10 pins
ORDER EXAMPLES:		1) $\mathrm{A} 58 \mathrm{H} 1-\mathrm{AV}-1024-6-05 \mathrm{~V}-\mathrm{ARO} 1 \mathrm{~W}$ 2) $\mathrm{A} 58 \mathrm{H} 1-\mathrm{F}-4000-8-30 \mathrm{~V}-\mathrm{AR} 06 / \mathrm{C} 12$ 3) $\mathrm{A} 58 \mathrm{H1} 1-\mathrm{F}-4000 / 500-8-30 \mathrm{~V}-\mathrm{ARO} / \mathrm{C} 12$			

A58HE

PHOTOELECTRIC ROTARY ENCODER

The encoder A58HE is used to measure angular position of the key machine components, industrial robots, comparators, rotary tables, servo drives and to establish an informational link with DCC, NC or Digital Readout Units.

The encoder has integrated stator coupling so it can be fixed directly on the object shaft. Mounting adapter - similar to adapter of encoder A58H - is available on request.

The encoder is used in automatic control, on-line gauging, process monitoring systems, etc.

MECHANICAL DATA

Line number on disc (z)	$\begin{aligned} & 100 ; 250 ; 500 ; 600 ; \\ & 800 ; 1000 ; 1024 ; \\ & 1125 ; 1250 ; 1500 ; \\ & \text { 2000; 2048; 2500; } \\ & 3000 ; 3600 ; 4000 ; \\ & 5000 ; 9000 ; 10800 \end{aligned}$
Pulse number per shaft revolution for A58-F	$\begin{aligned} & \text { Z } \times \mathrm{k}, \text { where } \\ & \mathrm{k}=1,2,3,4,5,8,10 \\ & \text { (k - interpolation factor) } \end{aligned}$
Maximum shaft speed	10000 rpm
Permissible motion of shaft: - axial - radial (at shaft end)	$\begin{aligned} & \pm 0.03 \mathrm{~mm} \\ & 0.05 \mathrm{~mm} \end{aligned}$
Accuracy $\left(T_{1}\right.$-period of lines on disc in arc. sec) - on option for z < 5000 - on option for z > 5000	$\begin{aligned} & \pm 0.1 \mathrm{~T}_{1} \text { arc. sec } \\ & \pm 0.05 \mathrm{~T}_{1} \text { arc. sec } \\ & \pm 12.0 \text { arc. sec } \end{aligned}$

The case of encoder is mounted via four screws M3 or through adapter. The encoder is coupled via shaft collar. Three versions of output signals are available:

- A58H-A - sinusoidal signals, with amplitude approx. $11 \mu \mathrm{App}$;
- A58H-AV - sinusoidal signals, with amplitude approx. 1 Vpp;
- A58H-F - square-wave signals (TTL or HTL) with integrated subdividing electronics for interpolation $\times 1$, x2, x3, x4, x5, x8, x10.

Starting torque at $20^{\circ} \mathrm{C}$	$\leq 0.025 \mathrm{Nm}$
Rotor moment of inertia	$<1.5 \times 10^{-4} \mathrm{kgm}^{2}$
Protection (housing) (IEC 529)	IP64
Protection (shaft side) (IEC 529)	IP64
Maximum weight without cable	0.35 kg
Operating temperature	$0 \ldots+70^{\circ} \mathrm{C}$
Storage temperature	$-30 \ldots+80^{\circ} \mathrm{C}$
Maximum humidity (non-condensing)	98%
Permissible vibration (55 to 2000 Hz)	$\leq 100 \mathrm{~m} / \mathrm{s}^{2}$
Permissible shock (11 ms)	$\leq 300 \mathrm{~m} / \mathrm{s}^{2}$

> Encoder without adapter

D, mm $\quad \varnothing 6 \quad \varnothing 8 \quad \varnothing 10 \quad \varnothing 12 \quad \varnothing 14^{\star}$ (on option)
*For one side fixation from encoder flange side

ELECTRICAL DATA

VERSION	A58HE-A $\sim 11 \mu$ App	A58HE-AV $\sim 1 \mathrm{Vpp}$	A58HE-F П TTL; Пل HTL
Supply voltage (U_{P})	$+5 \mathrm{~V} \pm 5 \%$	$+5 \mathrm{~V} \pm 5 \%$	$+5 \mathrm{~V} \pm 5 \%$; +(10 to 30) V
Max. supply current (without load)	80 mA	120 mA	120 mA
Light source	LED	LED	LED
Incremental signals	Two sinusoidal I , and I_{2} Amplitude at $1 \mathrm{k} \Omega$ load: $-11=7-16 \mu \mathrm{~A}$ $-12=7-16 \mu \mathrm{~A}$	Differential sine $+\mathrm{A} /-\mathrm{A}$ and $+\mathrm{B} /-\mathrm{B}$ Amplitude at 120Ω load: $\begin{aligned} & -\mathrm{A}=0.6-1.2 \mathrm{~V} \\ & -\mathrm{B}=0.6-1.2 \mathrm{~V} \end{aligned}$	Differential square-wave U1/U1 and U2/ $\overline{\mathrm{U} 2}$. Signal levels at 20 mA load current: - low (logic " 0 ") $\leq 0.5 \mathrm{~V}$ at $\mathrm{U}_{\mathrm{p}}=+5 \mathrm{~V}$ - low (logic "O") $\leq 1.5 \mathrm{~V}$ at $\cup_{p}^{P}=10$ to 30 V - high (logic "1") $\geq 2.4 \mathrm{~V}$ at $\mathrm{U}_{\mathrm{p}}=+5 \mathrm{~V}$ - high (logic "1") $\geq\left(\cup_{\mathrm{P}}-2\right) \vee$ at $\mathrm{U}_{\mathrm{p}}=10$ to 30 V
Reference signal	One quasi-triangular I_{0} peak per revolution. Signal magnitude at $1 \mathrm{k} \Omega$ load: $-I_{0}=2-8 \mu \mathrm{~A}$ (usable component)	One quasi-triangular +R and its complementary -R per revolution. Signals magnitude at 120 load - $\mathrm{R}=0.2-0.8 \mathrm{~V}$ (usable component)	One differential square-wave UO/U0 per revolution. Signal levels at 20 mA load current: low (logic " 0 ") $<0.5 \mathrm{~V}$ at $\mathrm{U}_{\mathrm{p}}=+5 \mathrm{~V}$ - low (logic " O ") $<1.5 \mathrm{~V}$ at $\cup_{\mathrm{p}}=10$ to 30 V - high (logic "1") $>2.4 \mathrm{~V}$ at $\mathrm{U}_{\mathrm{p}}=+5 \mathrm{~V}$ - high (logic " 1 ") $>\left(\cup_{p}-2\right) \vee$ at $U_{p}=10$ to 30 V
Maximum operating frequency	$(-3 \mathrm{~dB}) \geq 160 \mathrm{kHz}$	$(-3 \mathrm{~dB}) \geq 180 \mathrm{kHz}$	$(160 \times k) \mathrm{kHz}$, k-interpolation factor
Direction of signals	I_{2} lags I_{1} for clockwise rotation	+B lags +A for clockwise rotation	U2 lags U1 with clockwise rotation
Maximum rise and fall time	-	-	$<0.5 \mu \mathrm{~s}$
Standard cable length	1 m , without connector	1 m , without connector	1 m , without connector
Maximum cable length	$5 \text { m }$	25 m	25 m
Output signals			

Note:

1. Maximum working rotation speed (with proper encoder counting) is limited by maximum operating frequency and maximum mechanical rotation speed.
2. If cable extension is used, power supply conductor cross-section should not be smaller than $0.5 \mathrm{~mm}^{2}$.

ADAPTER

MOUNTING REQUIREMENTS

L, mm	11 min for one side fixation
	56 min for both side fixation
	56 max for version with protective cover
	11 min for version without protective cover

ORDER FORM

A58HM

PHOTOELECTRIC ROTARY ENCODER

The encoder A58HM is used to measure angular position of the key machine components, industrial robots, comparators, rotary tables, servo drives and to establish an informational link with DCC, NC or Digital Readout Units. The encoder has integrated stator coupling so it can be fixed directly onto object shaft. Mounting adapter - similar to adapter of encoder A58H - is available on request.

The encoder is used in automatic control, on-line gauging, process monitoring systems, etc.
The housing of the encoder is fixed to an object by

MECHANICAL DATA

Line number on disc (z)	$\begin{aligned} & 100 ; 250 ; 500 ; 600 ; 800 ; \\ & 1000 ; 1024 ; 1125 ; 1250 ; 1500 ; \\ & \text { 2000; 2048; 2500; 3000; 3600; } \\ & \text { 4000; 5000; 9000; } 10800 \end{aligned}$
Pulse number per shaft revolution for A58-F	Z x k, where $k=1,2,3,4,5,8,10$ (k - interpolation factor)
Maximum shaft speed	10000 rpm
Permissible motion of shaft: - axial - radial (at shaft end)	$\begin{aligned} & \pm 0.03 \mathrm{~mm} \\ & 0.05 \mathrm{~mm} \end{aligned}$
Accuracy (T_{1}-period of lines on disc in arc. sec) - on option for z < 5000 - on option for z>5000	$\begin{aligned} & \pm 0.1 T_{1} \text { arc. sec } \\ & \pm 0.05 T_{1} \text { arc. sec } \\ & \pm 12.0 \text { arc. sec } \end{aligned}$

means of four screws M3 or through adapter
The fixation to object shaft is made by two screws M3.
Three versions of output signals are available:

- A58HM-A - sinusoidal signals, with amplitude approx. $11 \mu \mathrm{App} ;$
- $\mathrm{A} 58 \mathrm{HM}-\mathrm{AV}$ - sinusoidal signals, with amplitude approx. 1 Vpp;
- A58HM-F - square-wave signals (TLL or HTL) with integrated subdividing electronics for interpolation $x 1, x 2, x 3, x 4, x 5, x 8, x 10$.

Starting torque at $20^{\circ} \mathrm{C}$	$\leq 0.025 \mathrm{Nm}$
Rotor moment of inertia	$<1.5 \times 10^{-4} \mathrm{kgm}^{2}$
Protection (housing) (IEC 529)	$\mathrm{IP64}$
Protection (shaft side) (IEC 529)	$\mathrm{IP64}$
Maximum weight without cable	0.35 kg
Operating temperature	$0 \ldots+70^{\circ} \mathrm{C}$
Storage temperature	$-30 \ldots+80^{\circ} \mathrm{C}$
Maximum humidity (non-condensing)	98%
Permissible vibration (55 to 2000 Hz)	$\leq 100 \mathrm{~m} / \mathrm{s}^{2}$
Permissible shock (11 ms)	$\leq 300 \mathrm{~m} / \mathrm{s}^{2}$

ELECTRICAL DATA

VERSION	A58HM-A $\sim 11 \mu$ App	A58HM-AV $\sim 1 \mathrm{Vpp}$	A58HM-F
Supply voltage (U_{p})	$+5 \mathrm{~V} \pm 5 \%$	$+5 \mathrm{~V} \pm 5 \%$	$+5 \mathrm{~V} \pm 5 \%$; +(10 to 30$) \mathrm{V}$
Max. supply current (without load)	80 mA	120 mA	120 mA
Light source	LED	LED	LED
Incremental signals	Two sinusoidal I , and I_{2} Amplitude at $1 \mathrm{k} \Omega$ load: $\begin{aligned} & -11=7-16 \mu \mathrm{~A} \\ & -12=7-16 \mu \mathrm{~A} \end{aligned}$	Differential sine $+\mathrm{A} /-\mathrm{A}$ and $+\mathrm{B} /-\mathrm{B}$ Amplitude at 120Ω load: $\begin{aligned} & -A=0.6-1.2 \mathrm{~V} \\ & -B=0.6-1.2 \mathrm{~V} \end{aligned}$	Differential square-wave U1/ $\overline{\mathrm{U} 1}$ and $\mathrm{U} 2 / \overline{\mathrm{U} 2}$. Signal levels at 20 mA load current: - low (logic " 0 ") $\leq 0.5 \mathrm{~V}$ at $\mathrm{U}_{\mathrm{p}}=+5 \mathrm{~V}$ - low (logic "O") $\leq 1.5 \mathrm{~V}$ at $\cup_{p}^{p}=10$ to 30 V - high (logic "1" 1) $\geq 2.4 \mathrm{~V}$ at $\mathrm{U}_{p}=+5 \mathrm{~V}$ - high (logic "1") $\geq\left(\cup_{p}-2\right) \vee$ at $U_{p}=10$ to 30 V
Reference signal	One quasi-triangular I peak per revolution. Signal magnitude at $1 \mathrm{k} \Omega$ load: $-I_{0}=2-8 \mu \mathrm{~A}$ (usable component)	One quasi-triangular +R and its complementary -R per revolution. Signals magnitude at 120Ω load - R = 0.2-0.8 V (usable component)	One differential square-wave UO/U0 per revolution. Signal levels at 20 mA load current: low (logic " 0 ") $<0.5 \mathrm{~V}$ at $\mathrm{U}_{\mathrm{p}}=+5 \mathrm{~V}$ - low (logic " 0 ") $<1.5 \mathrm{~V}$ at $\cup_{p}=10$ to 30 V - high (logic " 1 ") $>2.4 \mathrm{~V}$ at $\mathrm{U}_{\mathrm{P}}=+5 \mathrm{~V}$ - high (logic "1") >($\left.U_{P}-2\right)$ V at $\bigcup_{P}=10$ to 30 V
Maximum operating frequency	$(-3 \mathrm{~dB}) \geq 160 \mathrm{kHz}$	$(-3 \mathrm{~dB}) \geq 180 \mathrm{kHz}$	$(160 \times k) \mathrm{kHz}$, k-interpolation factor
Direction of signals	I_{2} lags I_{1} for clockwise rotation	B lags A for clockwise rotation	U2 lags U1 with clockwise rotation
Maximum rise and fall time	-	-	$<0.5 \mu \mathrm{~s}$
Standard cable length	1 m , without connector	1 m , without connector	1 m , without connector
Maximum cable length	5 m	25 m	25 m
Output signals			

Note:

1. Maximum working rotation speed (with proper encoder counting) is limited by maximum operating frequency and maximum mechanical rotation speed.
2. If cable extension is used, power supply conductor cross-section should not be smaller than $0.5 \mathrm{~mm}^{2}$.

MOUNTING DIMENSIONS

ACCESSORIES

CONNECTORS FOR CABLE	C9 9-pin round connector	C12 12-pin round connector	RS10 10-pin round connector	ONC 10-pin round connector
DIGITAL READOUT DEVICES	CS3000		CS5000	

ORDER FORM

A 90 H

PHOTOELECTRIC ANGLE ENCODER

Photoelectric angle encoder A 90 H is used to measure angular position of the key machine components, industrial robots, comparators, rotary tables and to establish an informational link with DCC, NC or Digital Readout Units. It provides information about the value and direction of motion. The encoder is used in automatic control, on-line gauging, process monitoring systems, etc.

Three versions of output signals are available:

- A90H-A - sinusoidal signals, with amplitude approx. 11 $\mu \mathrm{App} ;$

MECHANIGAL DATA

Line number on disc (z)
Number of output pulses per revolution for A90H-F
Reference signal:

- standard (S)
- distance-coded (K)

Permissible mech. speed
Max. operating speed (depends on number of output pulses)
Accuracy grades
Starting torque at $20^{\circ} \mathrm{C}$

18000
$\mathrm{Z} \times \mathrm{k}$, where $\mathrm{k}=1,2,3,4,5$, $8,10,20,25,50,100$
one per shaft revolution 36 per shaft revolution
$\leq 3000 \mathrm{rp}$
600 to 1000 rpm
± 5.0 arc. sec; ± 7.5 arc. sec $\leq 0.08 \mathrm{Nm}$

MOUNTING TYPE P (CLAMP)

- A90H-AV - sinusoidal signals, with amplitude approx. 1 Vpp;
- A90H-F - square-wave signals (TTL) with integrated subdividing electronics for interpolation $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 5, \mathrm{x} 10$, x20, x25, x50 and 100.

The modification with distance-coded reference marks is available.

The encoder has two coupling versions: P - via shaft collar and H - via central screw.

Permissible shaft run out:

- axial	0.02 mm
- radial	$\pm 0.02 \mathrm{~mm}$
Rotor moment of inertia	$<0.6 \times 10^{-4} \mathrm{kgm}^{2}$
Protection (IEC 529)	$I P 64$
Maximum weight without cable	1.2 kg
Operating temperature	$0 \ldots+70^{\circ} \mathrm{C}$
Storage temperature	$-30 \ldots+85^{\circ} \mathrm{C}$
Maximum humidity (non condensing)	98%
Permissible vibration (55 to 2000 Hz)	$\leq 100 \mathrm{~m} / \mathrm{s}^{2}$
Permissible shock (5 ms)	$\leq 300 \mathrm{~m} / \mathrm{s}^{2}$

ELECTRICAL DATA

VERSION	A90H-A $\sim 11 \mu$ App	A90H-AV $\sim 1 \mathrm{Vpp}$	A90H-FП】 TTL
Supply voltage (U_{p})	$+5 V \pm 5 \%$	$+5 \mathrm{~V} \pm 5 \%$	$+5 \mathrm{~V} \pm 5 \%$;
Max. supply current (without load)	100 mA	120 mA	150 mA
Light source	LED	LED	LED
Incremental signals	Two sinusoidal I , and I . Amplitude at $1 \mathrm{k} \Omega$ load: $\begin{aligned} & -I_{1}=7 \ldots 16 \mu \mathrm{~A} \\ & -I_{2}=7 \ldots 16 \mu \mathrm{~A} \end{aligned}$	Differential sine $+\mathrm{A} /-\mathrm{A}$ and $+\mathrm{B} /-\mathrm{B}$ Amplitude at 120Ω load: $\begin{aligned} -A & =0.6 \ldots 1.2 \mathrm{~V} \\ -B & =0.6 \ldots 1.2 \mathrm{~V} \end{aligned}$	Differential square-wave $\cup 1 / \overline{\mathrm{U} 1}$ and $\mathrm{U} 2 / \overline{\mathrm{U} 2}$. Signal levels at 20 mA load current: - low (logic " 0 ") $\leq 0.5 \mathrm{~V}$ - high (logic "1") $\geq 2.4 \mathrm{~V}$
Reference signal	One quasi-triangular I peak per revolution. Signal magnitude at $1 \mathrm{k} \Omega$ load: $-I_{0}=2 \ldots 8 \mu$ (usable component)	One quasi-triangular $+R$ and its complementary -R per revolution. Signals magnitude at 120Ω load - $\mathrm{R}=0.2 \ldots . .0 .8 \mathrm{~V}$ (usable component)	One differential square-wave UO/U0 per revolution. Signal levels at 20 mA load current: - low (logic "O") < 0.5 V - high (logic "1") $>2.4 \mathrm{~V}$
Maximum operating frequency	$(-3 \mathrm{~dB}) \geq 160 \mathrm{kHz}$	$(-3 \mathrm{~dB}) \geq 180 \mathrm{kHz}$	$160-2500 \mathrm{kHz}$ (depends on interpolation factor)
Direction of signals	I, lags I, for clockwise rotation (viewed from encoder mounting side)	+B lags +A for clockwise rotation (viewed from encoder mounting side)	U2 lags U1 with clockwise rotation (viewed from encoder mounting side)
Maximum rise and fall time	-	-	$<0.2 \mu \mathrm{~s}$
Standard cable length	1 m , without connector	1 m , without connector	1 m , without connector
Maximum cable length	5 m	25 m	25 m
Output signals			

Note:

1. Maximum working rotation speed (with proper encoder counting) is limited by maximum operating frequency and maximum mechanical rotation speed.
2. If cable extension is used, power supply conductor cross-section should not be smaller than $0.5 \mathrm{~mm}^{2}$.
MOUNTING REQUIREMENTS

ACCESSORIES

CONNECTORS FOR CABLE	B12 12-pin round connector	C9 9-pin round connector	C12 12-pin round connector	D9 9-pin flat connector	D15 15-pin flat connector	RS10 10-pin round connector	ONC 10-pin round connector	HR25 8 -pins round mini connector
DIGITAL READOUT DEVICES	CS3000				CS5000			
EXTERNAL INTERPOLATOR				NK				

ORDER FORM

A110

PHOTOELECTRIC ANGLE ENCODER

Photoelectric angle encoder A110 is used to establish an informational link between the key machine components, industrial robots, comparators and DCC, NC or Digital Readout Units. It provides information about the value and direction of motion. The encoder is used in automatic control, on-line gauging, process monitoring systems, etc.
Three versions of output signals are available:

- A110-A - sinusoidal signals, with amplitude approx. $11 \mu \mathrm{App} ;$

MECHANIGAL DATA

Line number on disc (z)	18000
Number of output pulses per revolution for A110	$\begin{aligned} & \text { Z x k , where } k=1,2,3,4,5,8 \\ & 10,20,25,50,100 . \end{aligned}$
Reference signal: - standard (S) - distance-coded (K)	one per shaft revolution 36 per shaft revolution
Maximum shaft speed	5000 rpm
Maximum shaft load: - axial - radial (at shaft end)	$\begin{aligned} & 10 \mathrm{~N} \\ & 10 \mathrm{~N} \end{aligned}$

- A110-AV - sinusoidal signals, with amplitude approx. 1 Vpp ;
- A110-F - square-wave signals (TTL), with integrated subdividing electronics for interpolation $x 1, x 2, x 5$, x10, x20, x25, x50 and x100.

The modification with distance-coded reference marks is available.

Accuracy	$\pm 7.5 ; \pm 5.0$ arc. sec
Starting torque at $20^{\circ} \mathrm{C}$	$\leq 0.01 \mathrm{Nm}$
Rotor moment of inertia	$<20 \times 10^{-6} \mathrm{kgm}^{2}$
Protection (IEC 529)	IP64
Maximum weight without cable	0.7 kg
Operating temperature	$0 . .+50^{\circ} \mathrm{C}$
Storage temperature	$-30 \ldots+80^{\circ} \mathrm{C}$
Maximum humidity (non condensing)	98%
Permissible vibration	$\leq 100 \mathrm{~m} / \mathrm{s}^{2}$
Permissible shock (6 ms)	$\leq 300 \mathrm{~m} / \mathrm{s}^{2}$

ELECTRICAL DATA

VERSION	$\mathrm{A} 110-\mathrm{A} \sim 11 \mu \mathrm{App}$	A110-AV $\sim 1 \mathrm{Vpp}$	A110-FПTTL
Supply voltage (U_{p})	$+5 \mathrm{~V} \pm 5 \%$	$+5 \mathrm{~V} \pm 5 \%$	$+5 \mathrm{~V} \pm 5 \%$;
Max. supply current (without load)	80 mA	120 mA	120 mA
Light source	LED	LED	LED
Incremental signals	Two sinusoidal I_{1} and I_{2} Amplitude at $1 \mathrm{k} \Omega$ load: $\begin{aligned} & -11=7-16 \mu A \\ & -12=7-16 \mu \mathrm{~A} \end{aligned}$	Differential sine $+\mathrm{A} /-\mathrm{A}$ and $+\mathrm{B} /-\mathrm{B}$ Amplitude at 120Ω load: $\begin{aligned} -A & =0.6-1.2 \mathrm{~V} \\ -B & =0.6-1.2 \mathrm{~V} \end{aligned}$	Differential square-wave $\mathrm{U} 1 / \overline{\mathrm{U} 1}$ and $\mathrm{U} 2 / \overline{\mathrm{U} 2}$. Signal levels at 20 mA load current: - low (logic "0") $\leq 0.5 \mathrm{~V}$ - high (logic "1") $\geq 2.4 \mathrm{~V}$
Reference signal	One quasi-triangular I peak per revoIution. Signal magnitude at $1 \mathrm{k} \Omega$ load: $-I_{0}=2-8 \mu \mathrm{~A}$ (usable component)	One quasi-triangular $+R$ and its complementary -R per revolution. Signals magnitude at 120Ω load $-\mathrm{R}=2-8 \mathrm{~V}$ (usable component)	One differential square-wave UO/UO per revolution. Signal levels at 20 mA load current: - low (logic "O") < 0.5 V - high (logic " 1 ") $>2.4 \mathrm{~V}$
Maximum operating frequency	$(-3 \mathrm{~dB}) \geq 160 \mathrm{kHz}$	$(-3 \mathrm{~dB}) \geq 180 \mathrm{kHz}$	$(160 \times k) \mathrm{kHz}$, k-interpolation factor
Direction of signals	I_{2} lags I, for clockwise rotation (viewed from shaft side)	+B lags +A for clockwise rotation (viewed from shaft side)	U2 lags U1 with clockwise rotation (viewed from shaft side)
Maximum rise and fall time	-	-	$<0.5 \mu \mathrm{~s}$
Standard cable length	1 m , without connector	1 m , without connector	1 m , without connector
Maximum cable length	5 m	25 m	25 m
Output signals			

Note:

1. Maximum working rotation speed (with proper encoder counting) is limited by maximum operating frequency and maximum mechanical rotation speed.
2. If cable extension is used, power supply conductor cross-section should not be smaller than $0.5 \mathrm{~mm}^{2}$.

ACCESSORIES

CONNECTORS FOR CABLE	B12 12-pin round connector	C9 9-pin round connector	C12 12-pin round connector	D9 9-pin flat connector	D15 15-pin flat connector	RS10 10-pin round connector	ONC 10-pin round connector	HR25 8 -pins round mini connector
DIGITAL READOUT DEVICES	CS3000				CS5000			
COUPLING	SC70							
EXTERNAL INTERPOLATOR	NK							

ORDER FORM

PHOTOELECTRIC ANGLE ENCODER

(1)

HD $\mu \mathrm{m}$

Precision photoelectric angle encoder A170 is used for precise angular displacement measurement of rotary tables, dividers, comparators, antennas and other high precision equipment. It provides information about the value and direction of motion. The encoder is used in automatic control, on-line gauging, process monitoring systems, etc.

The stainless steel case of the encoder is mounted using screws. The angle encoder is connected to the motor shaft or spindle via coupling, available optionally.
Three versions of output signals are available:
MECHANICAL DATA

Line number on disc (Z)	18000,36000
Number of output pulses per revolu- tion for A170-F	$Z \times k$, where $k=1,2,3,4,5$, $8,10,20,25,50,100$
Reference signal: - standard (S) - distance-coded (K) for $z=18000$ - distance-coded (K) for $z=36000$	One per shaft revolution 36 per shaft revolution 72 per shaft revolution
Permissible mech. speed	≤ 1000 rpm
Max. operating speed (depends on number of output pulses)	300 to 500 rpm

Accuracy
$\pm 2.5 ; \pm 5.0$ arc. sec

- A170-A - sinusoidal signals, with amplitude approx. $11 \mu \mathrm{App} ;$
- A170-AV - sinusoidal signals, with amplitude approx. 1 Vpp;
- A170-F - square-wave signals (TTL) with integrated subdividing electronics for interpolation $x 1, x 2, x 5$, x10, x20, x25, x50 and x100.
The modification with distance-coded reference marks is available

Permissible shaft load:	
- axial	$\leq 30 \mathrm{~N}$
- radial	$\leq 30 \mathrm{~N}$
Starting torque at $20^{\circ} \mathrm{C}$	$\leq 0.012 \mathrm{Nm}$
Rotor moment of inertia	$<3.7 \times 10^{-4} \mathrm{kgm}^{2}$
Protection (IEC 529)	$I P 64$
Maximum weight without cable	3.5 kg
Operating temperature	$0 \ldots+70^{\circ} \mathrm{C}$
Storage temperature	$-30 \ldots+85^{\circ} \mathrm{C}$
Maximum humidity (non condensing)	98%
Permissible vibration	$\leq 100 \mathrm{~m} / \mathrm{s}^{2}$
Permissible shock (6 ms)	$\leq 300 \mathrm{~m} / \mathrm{s}^{2}$

ELECTRIGAL DATA

VERSION	A170-A $\sim 11 \mu$ App	A170-AV 1 Vpp	A170-FП】TTL
Supply voltage (\cup_{P})	$+5 \mathrm{~V} \pm 5 \% 100 \mathrm{~mA}$ max.	$+5 \mathrm{~V} \pm 5 \% 120 \mathrm{~mA}$ max.	$+5 \mathrm{~V} \pm 5 \% ; 150 \mathrm{~mA}$ max
Light source	LED	LED	LED
Incremental signals	Two sinusoidal I_{1} and I_{2} Amplitude at $1 \mathrm{k} \Omega$ load: $-11=7 . . .16 \mu \mathrm{~A}$ $-12=7 \ldots 16 \mu \mathrm{~A}$	Differential sine $+\mathrm{A} /-\mathrm{A}$ and $+\mathrm{B} /-\mathrm{B}$ Amplitude at 120Ω load: $\begin{aligned} -A & =0.6 \ldots 1.2 \mathrm{~V} \\ -B & =0.6 \ldots 1.2 \mathrm{~V} \end{aligned}$	Differential square-wave $\mathrm{U} 1 / \overline{\mathrm{U} 1}$ and $\mathrm{U} 2 / \overline{\mathrm{U} 2}$. Signal levels at 20 mA load current: - low (logic "0") $\leq 0.5 \mathrm{~V}$ - high (logic "1") $\geq 2.4 \mathrm{~V}$
Reference signal	One quasi-triangular I_{0} peak per revoIution. Signal magnitude at $1 \mathrm{k} \Omega$ load: $-I_{0}=2 \ldots 8 \mu \mathrm{~A}$ (usable component)	One quasi-triangular $+R$ and its complementary -R per revolution. Signals magnitude at 120Ω load - $\mathrm{R}=2 \ldots 8 \mathrm{~V}$ (usable component)	One differential square-wave UO/U0 per revolution. Signal levels at 20 mA load current: - low (logic "0") < 0.5 V - high (logic " 1 ") $>2.4 \mathrm{~V}$
Maximum operating frequency	$(-3 \mathrm{~dB}$ cutoff $) \geq 160 \mathrm{kHz}$	$(-3 \mathrm{~dB}$ cutoff $) \geq 180 \mathrm{kHz}$	(160-2500 kHz (depends on interpolation factor)
Direction of signals	I_{2} lags I_{1} for clockwise rotation (viewed from encoder mounting side)	+B lags +A for clockwise rotation (viewed from encoder mounting side)	U2 lags U1 with clockwise rotation (viewed from encoder mounting side)
Maximum rise and fall time	-	-	$<0.5 \mu \mathrm{~s}$
Standard cable length	1 m , without connector	1 m , without connector	1 m , without connector
Maximum cable length	5 m	25 m	25 m
Output signals			

Note:

1. Maximum working rotation speed (with proper encoder counting) is limited by maximum operating frequency and maximum mechanical rotation speed.
2. If cable extension is used, power supply conductor cross-section should not be smaller than $0.5 \mathrm{~mm}^{2}$.

ACCESSORIES

CONNECTORS FOR CABLE	B12 12-pin round connector	C9 9-pin round connector	C12 12-pin round connector	D9 9-pin flat connector	D15 15-pin flat connector	RS10 10-pin round connector	ONC 10-pin round connector	HR25 8 -pins round mini connector
DIGITAL READOUT DEVICES		CS3000				CS5000		
COUPLING		SC98-1				SC98-2		
EXTERNAL INTERPOLATOR					NK			

ORDER FORM

[^6]
A170H

PHOTOELECTRIC
 ANGLE ENCODER

Precision photoelectric angle encoder A 170 H is used for precise angular displacement measurement of rotary tables, dividers, comparators, antennas and other high precision equipment.

It provides information about the value and direction of the motion. The encoder is used in automatic control, on-line gauging, process monitoring systems, etc.
The encoder has a rigid stainless steel construction and shaft collar coupling. Encoder is coupled via shaft collar.

Three versions of output signals are available:

MECHANIGAL DATA

Line number on disc (Z)	18000,36000
Number Number of output pulses per	Zxk where $\mathrm{k}=1,2,3,4,5,8$,
revolution for A170-F	$10,20,25,50,100$
Reference signal:	one per shaft revolution 36 per shaft revolution 72 per shaft revolution
	$\leq 1000 \mathrm{rpm}$
Permissible mech. speed	300 to 500 rpm
Max. operating speed (depends on	
number of output pulses)	
Permissible shaft load: - axial - radial	$0,02 \mathrm{~mm}$
Accuracy	$0,02 \mathrm{~mm}$

- A170H-A - sinusoidal signals, with amplitude approx. $11 \mu \mathrm{App}$;
- A170H-AV - sinusoidal signals, with amplitude approx. 1 Vpp ;
- A170H-F - square-wave signals (TTL) with integrated subdividing electronics for interpolation $x 1, x 2$, x5, x10, x20, x25, x50 and x100.
The modification with distance-coded reference marks is available.

Starting torque at $20^{\circ} \mathrm{C}$	$\leq 0.5 \mathrm{Nm}$
Rotor moment of inertia	$<0.9 \times 10^{-3} \mathrm{kgm}$
Protection (IEC 529)	IP 64
Maximum weight without cable	4.1 kg
Operating temperature	$0 \ldots+70^{\circ} \mathrm{C}$
Storage temperature	$-30 \ldots+85^{\circ} \mathrm{C}$
Maximum humidity (non condensing)	98%
Permissible vibration	$\leq 100 \mathrm{~m} / \mathrm{s}^{2}$
Permissible shock (6 ms)	$\leq 300 \mathrm{~m} / \mathrm{s}^{2}$

ELECTRICAL DATA

VERSION	A170H-A $\sim 11 \mu$ App	A170H-AV $\sim 1 \mathrm{Vpp}$	A170H-F П TTL
Supply voltage (U_{P})	$+5 \mathrm{~V} \pm 5 \%$	$+5 \mathrm{~V} \pm 5 \%$	$+5 \mathrm{~V} \pm 5 \% ;$
Max. supply current (without load)	100 mA	120 mA	150 mA
Light source	LED	LED	LED
Incremental signals	Two sinusoidal I , and I , Amplitude at $1 \mathrm{k} \Omega$ load: $-11=7 \ldots 16 \mu \mathrm{~A}$ $-12=7 \ldots 16 \mu \mathrm{~A}$	Differential sine $+\mathrm{A} /-\mathrm{A}$ and $+\mathrm{B} /-\mathrm{B}$ Amplitude at 120Ω load: $\begin{aligned} & -A=0.6 \ldots 1.2 \mathrm{~V} \\ & -B=0.6 \ldots 1.2 \mathrm{~V} \end{aligned}$	Differential square-wave U1/ $\overline{\mathrm{U} 1}$ and U2/V2. Signal levels at 20 mA load current: - low (logic "O") $\leq 0.5 \mathrm{~V}$ - high (logic "1") $\geq 2.4 \mathrm{~V}$
Reference signal	One quasi-triangular I peak per revolution. Signal magnitude at $1 \mathrm{k} \Omega$ load: $-I_{0}=2 \ldots 8 \mu \mathrm{~A}$ (usable component)	One quasi-triangular +R and its complementary -R per revolution. Signals magnitude at 120Ω load - $\mathrm{R}=0.2 \ldots 0.8 \mathrm{~V}$ (usable component)	One differential square-wave UO/U0 per revolution. Signal levels at 20 mA load current: - low (logic "O") < 0.5 V - high (logic " 1 ") > 2.4 V
Maximum operating frequency	$(-3 \mathrm{~dB}$ cutoff $) \geq 160 \mathrm{kHz}$	$(-3 \mathrm{~dB}$ cutoff $) \geq 180 \mathrm{kHz}$	$160-2500 \mathrm{kHz}$ (depends on interpolation factor)
Direction of signals	I, lags I, for clockwise rotation (viewed from encoder mounting side)	+B lags +A for clockwise rotation (viewed from encoder mounting side)	U2 lags U1 with clockwise rotation (viewed from encoder mounting side)
Maximum rise and fall time	-	-	$<0.5 \mu \mathrm{~s}$
Standard cable length	1 m , without connector	1 m , without connector	1 m , without connector
Maximum cable length	5 m	25 m	25 m
Output signals			

Note:

1. Maximum working rotation speed (with proper encoder counting) is limited by maximum operating frequency and maximum mechanical rotation speed.
2. If cable extension is used, power supply conductor cross-section should not be smaller than $0.5 \mathrm{~mm}^{2}$.

MOUNTING REQUIREMENTS

ACCESSORIES

CONNECTORS FOR CABLE	B12 12-pin round connector	C9 9 -pin round connector	$\mathrm{C} 12$ 12-pin round connector	D9 9-pin flat connector	D15 15-pin flat connector	RS10 10-pin round connector	ONC 10-pin round connector	HR25 8 -pins round mini connector
DIGITAL READOUT DEVICES	CS3000				CS5000			
EXTERNAL INTERPOLATOR					NK			

ORDER FORM

MAGNETIC ABSOLUTE ROTARY ENCODER

Absolute magnetic rotary encoder AM36 is used for information about rotary movements transfer to electronic units when working in the fields of metal working, industry automatisation, robotics industry, equipment control, measuring equipment and others.

Encoder has magnetic operation device and case. Incorporated to case special integrated circuit receives magnetic device rotation and transfers it to output signals.

MECHANICAL DATA

Maximum shaft speed	10000 rpm
Maximum shaft load:	5 N
- axial	
- radial (at shaft end)	10 N
Starting torque at $20^{\circ} \mathrm{C}$	$<0.002 \mathrm{Nm}$
Rotor moment of inertia	<2 gcm2
Protection (IEC 529)	up to IP64

Maximum weight without cable	0.07 kg
Operating temperature	$-10 \ldots+70^{\circ} \mathrm{C}$
Storage temperature	$-30 \ldots+80^{\circ} \mathrm{C}$
Maximum humidity (without conden-	98%
sation of moisture)	
Permissible vibration (55 to 2000 Hz$)$ $<100 \mathrm{~m} / \mathrm{s} 2$ Permissible shock (11 ms) $<300 \mathrm{~m} / \mathrm{s} 2$	

ELECTRICAL DATA

Supply voltage: - standard - optional	$+5 \mathrm{~V} \pm 5 \%$
Accuracy	$\pm(10 \ldots 30) \mathrm{V} \pm 5 \%$
Resolution	± 0.3 arc. degree
Code	$2^{12}(4096)$
Maximum operating frequency, kHz	300
Standard cable length	1 m
Maximum cable length	25 m

Output signals:

Incremental
TTL, HTL (Up to 1024ppr)

Through synchronous serial interface SSI (Up to 12bit)

Clock frequency $-20 \mathrm{kHz} \div 4 \mathrm{MHz} ;$ TTD $-25 \mathrm{~ns} \div 15 \mathrm{~ns}$
Commutation
UVW (pole number 2, 4, 6,
$8,10,12,14,16)$

ACCESSORIES

CONNECTORS FOR CABLE	B12 12-pin round connector	C9 9-pin round connector	C12 12-pin round connector	D9 9-pin flat connector	D15 15-pin flat connector	RS10 10-pin round connector	ONC 10-pin round connector
COUPLING				SC30			

ORDER FORM

Other output options are available by request

MAGNETIC ABSOLUTE ROTARY ENCODER

O潾
(11) (s)
-

Absolute magnetic rotary encoder AM58 is used for information about rotary movements transfer to electronic units when working in the fields of metal working, industry automatisation, robotics industry, equipment control, measuring equipment and others.

MECHANICAL DATA

Maximum shaft speed	12000 rpm
Maximum shaft load:	
\quad - axial	10 N
\quad - radial (at shaft end)	20 N
Starting torque at 200C	$<0.01 \mathrm{Nm}$
Rotor moment of inertia	$<15 \mathrm{gcm} 2$
Protection (IEC 529):	up to IP67

Encoder has magnetic operation device and case. Incorporated to case special integrated circuit receives magnetic device rotation and transfers it to output signals.

Maximum weight without cable	0.25 kg
Operating temperature	$-25 \ldots+85^{\circ} \mathrm{C}$
Storage temperature	$-40 \ldots+125^{\circ} \mathrm{C}$
Maximum humidity (non-condensing)	98%
Permissible vibration (55 to 2000 Hz)	$<100 \mathrm{~m} / \mathrm{s} 2$
Permissible shock (11 ms)	$<1000 \mathrm{~m} / \mathrm{s} 2$

AM58M

Connector type / cable outlet	ONC axial	RS10 axial	C12, C9 axial	ONC radial	RS10 radial
L1	41 mm	41 mm	41 mm	54 mm	53 mm
L2	16 mm	9 mm	22 mm	16 mm	9 mm
L3	M24	M 14	M 23	M 24	M 14

C12, C9 radial	Cable axial (ver. \mathbf{A})
53 mm	41 mm
22 mm	12 mm
123	-

Cable radial (ver. R)	Cable axial-radial (ver. AR)
41 mm	43 mm
12 mm	-

AM58C2

AM58C3

AM58D

E-ECTRIGAL DATA

Supply voltage: - standard - optional	$\begin{aligned} & +5 \mathrm{~V} \pm 5 \% \\ & +(10 \ldots 30) \mathrm{V} \pm 5 \% \end{aligned}$
Accuracy	± 0.3 arc. degree
Resolution	$2^{12}(4096)$
Code	binary
Maximum operating frequency, kHz	300
Standard cable length	1 m
Maximum cable length	25 m

Output signals:

Incremental

> TTL, HTL (Up to 1024ppr)
$\mathrm{a}=0.25 \mathrm{~T} \pm 0.125 \mathrm{~T}$

Through synchronous serial interface SSI (Up to 12bit)

Clock $\leq 4 \mathrm{Mhz} \quad 15 \mu \mathrm{~s} \leq \mathrm{t}_{\mathrm{m}} \leq 25 \mu \mathrm{~s}$
Clock frequency - 20kHz $\div 4 \mathrm{MHz}$; TTD - $25 \mathrm{~ns} \div 15 \mathrm{~ns}$

Commutation
UVW (pole number 2, 4, 6, 8, $10,12,14,16)$

ACCESSORIES

CONNECTORS FOR CABLE	B12 12-pin round connector	C9 9-pin round connector	C12 12-pin round connector	D9 9-pin flat connector	D15 15-pin flat connector	RS10 10-pin round connector	ONC 10-pin round connector
CONNECTORS ON HOUSING	$\begin{aligned} & \text { C9 } \\ & \text { 9-pin round co } \end{aligned}$	ector	$\begin{aligned} & \text { C12 } \\ & \text { 12-pin round } \end{aligned}$	ector	$\begin{aligned} & \text { RS10 } \\ & \text { 10-pin rou } \end{aligned}$	nector	ONC 10-pin round connector

COUPLING	SC30
EXTERNAL INTERPOLATOR	NK

ORDER FORM

Other output options are available by request

PHOTOELECTRIC LINEAR ENCODER

The sealed linear encoder L18 is used to convert linear displacements of key machine components into electrical signals containing information about the value and direction of the displacement.

The encoder consists of a glass scale installed into a rigid hollow housing and a ball-bearing-guided reading head. To be able to work in harsh environments (lubricants and chips), the encoder has sealing lips.

Filtered air can be supplied into the housing of the encoder for extra protection.

MECHANIGAL DATA

Measuring lengths (ML), mm	70; 120; 170; 220; 270; 320; 370; 420; 520; 620; 720; 820; 920; 1020; 1140; 1240 (other intermediate lengths on request)
Accuracy grades to any metre within the ML (at $20^{\circ} \mathrm{C}$)	$\pm 10 ; \pm 5 ; \pm 3 \mu \mathrm{~m}$ (optional)
Grating period	$20 \mu \mathrm{~m} ; 40 \mu \mathrm{~m}$ (optional)
Reference marks (RI): -standard for ML $\leq 1020 \mathrm{~mm}$ -standard for ML > 1140 mm -optional	35 mm from both ends of ML 45 mm from both ends of ML one RI at any location, or two or more Rl's separated by distances of $n \times 50 \mathrm{~mm}$ or distance-coded

=L-ECTRICAL DATA

VERSION	L18-A $\sim 11 \mu$ App	L18-AV $\sim 1 \mathrm{Vpp}$	L18-F ПTTL
Power supply	$+5 \mathrm{~V} \pm 5 \% /<90 \mathrm{~mA}$	$+5 \mathrm{~V} \pm 5 \%<120 \mathrm{~mA}$	$+5 \mathrm{~V} \pm 5 \% /<120 \mathrm{~mA}$
Light source	LED	LED	LED
Resolution	Depends on external subdividing electronics	Depends on external subdividing electronics	5; 2.5; 1; 0.5; 0.2; 0.1 um (after 4-fo subsequent electronics)
Incremental signals	Two sinusoidal I_{1} and I_{2} Amplitude at $1 \mathrm{k} \Omega$ load: $-11=7-16 \mu \mathrm{~A}$ $-12=7-16 \mu \mathrm{~A}$	Differential sine $+\mathrm{A} /-\mathrm{A}$ and $+\mathrm{B} /-\mathrm{B}$ Amplitude at 120Ω load: $\begin{aligned} -A & =0.6-1.2 \mathrm{~V} \\ -B & =0.6-1.2 \mathrm{~V} \end{aligned}$	Differential square-wave U1/ $\overline{\mathrm{U1}}$ Signal levels at 20 mA load current: - low (logic "0") $\leq 0.5 \mathrm{~V}$ - high (logic " 1 ") $\geq 2.4 \mathrm{~V}$
Reference signal	One quasi-triangular I_{0} peak per revolution. Signal magnitude at $1 \mathrm{k} \Omega$ load: $-I_{0}=2-8 \mu \mathrm{~A}$ (usable component)	One quasi-triangular +R and its complementary -R per revolution. Signals magnitude at 120Ω load - $\mathrm{R}=0.2-0.8 \mathrm{~V}$ (usable component)	One differential square-wave UO/ tion. Signal levels at 20 mA load - low (logic "0") < 0.5 V - high (logic "1") $>2.4 \mathrm{~V}$
Maximum operating frequency	50 kHz	50 kHz	$50 x \mathrm{kHz}$, when interpolation fact 1000 kHz when interpolation facto
Direction of signals	I_{2} lags I_{1} at reading head displacement from left to right	$B+$ lags $A+$ at reading head displacement from left to right	U2 lags U1 at reading head displa left to right
Standard cable length	3 m , without connector	3 m , without connector	3 m , without connector
Maximum cable length	5 m	25 m	25 m
Output signals			

Note: If cable extension is used the power supply conductor section should not be smaller than $0.5 \mathrm{~mm}^{2}$.

ACCESSORIES

CONNECTORS FOR CABLE	B12 12-pin round connector	C9 9 -pin round connector	$\mathrm{C} 12$ 12-pin round connector	D9 9-pin flat connector	D15 15-pin flat connector	RS10 10-pin round connector	ONC 10-pin round connector	HR25 8 -pins round mini connector
DIGITAL READOUT DEVICES		CS3000			CS5000			
EXTERNAL INTERPOLATOR					NK			

ORDER FORM

PHOTOELECTRIC
 LINEAR ENCODER

The sealed linear encoder L18B is used to convert linear displacements of key machine components into electrical signals containing information about the value and direction of the displacement.
The encoder consists of a glass scale installed into a rigid hollow housing and a ball-bearing-guided reading head. To be able to work in harsh environments (lubricants and chips), the encoder has sealing lips.
The photoelectric unit of the reading head generates sinusoidal micro-current or TTL square-wave (standard

MECHANIGAL DATA

Accuracy grades to any metre within the ML (at $20^{\circ} \mathrm{C}$):

- for ML 70 to 2040
- for ML 2040 to 3240

Grating period
Reference marks (RI):
-standard for ML $\leq 1020 \mathrm{~mm}$ -standard for ML> 1140 mm -optional

70; 120; 170; 220; 270; 320; 370; 420 470; 520; 620; 720; 820; 920; 1020; 1140; 1240; 1340; 1440; 1540; 1640 1740; 1840; 1940; 2040; 2140; 2240 2340; 2440; 2540; 2640; 2740; 2840;
2940; 3040; 3140; 3240
(other intermediate lengths on request)
$\pm 10 ; \pm 5 \mu \mathrm{~m}$
$\pm 10 \mu \mathrm{~m}$
$20 \mu \mathrm{~m} ; 40 \mu \mathrm{~m}$ (optional)

35 mm from both ends of ML
45 mm from both ends of ML
one RI at any location, or two or more
Rl's separated by distances of $n \times 50$ mm or distance-coded

RS422) output signals.
Three versions of output signals are available:

- L18B-A - Sinusoidal signals, with amplitude approx. $11 \mu \mathrm{App}$, require an external subdividing electronics.
- L18B-AV - Sinusoidal signals, with amplitude approx. 1 Vpp , require external subdividing electronics.
- L18B-F - Square-wave signals, with integrated subdividing electronics for interpolation $\times 1, \mathrm{x} 2, \mathrm{x} 5, \mathrm{x} 10$, x25, x50

Max. traversing speed: -when interpolation factor is 1,2,5,10 -when interpolation factor is 25 -when interpolation factor is 50	$1 \mathrm{~m} / \mathrm{s}$ $0.5 \mathrm{~m} / \mathrm{s}$ $0.4 \mathrm{~m} / \mathrm{s}$
Required moving force with sealing lips	$<3 \mathrm{~N}$
Protection (IEC 529) -without compressed air -with compressed air (optional)	$\begin{aligned} & \text { IP53 } \\ & \text { IP64 } \end{aligned}$
Weight	$0.4 \mathrm{~kg}+1.0 \mathrm{~kg} / \mathrm{m}$
Operating temperature	$0 . . .+50^{\circ} \mathrm{C}$
Storage temperature	$-20 . . .+70^{\circ} \mathrm{C}$
Permissible vibration (40 to 2000 Hz) $\mathrm{Hz})$	$\leq 30 \mathrm{~m} / \mathrm{s}^{2}$
Permissible shock (11 ms)	$\leq 100 \mathrm{~m} / \mathrm{s}^{2}$

=L-GTRICAL DATA

Note: If cable extension is used the power supply conductor section should not be smaller than $0.5 \mathrm{~mm}^{2}$.

ACCESSORIES

CONNECTORS FOR CABLE

DIGITAL READOUT DEVICES

B12
12-pin round connector

C9
9 -pin round connector

C12
12-pin round connector CS3000

D15
15-pin flat connector

RS10 10-pin round connector ONC 10-pin round connector HR25 8-pins round mini connector

CS5000

ORDER FORM

L18B	$x x x-x / x x x-x x-x-x-x x / x$						
	\downarrow				\downarrow		
OUTPUT SIGNALS AND RESOLUTION:	MEASURING LENGTH:	REFERENCE MARKS:	ACCURACY:	COMPRESSED AIR:	CABLE OR CONNECTOR OUTLET:	CABLE LENGTH:	CONNECTOR TYPE:
A - Sinusoidal AV - Sinusoidal F01 - TIL $0.1 \mu \mathrm{~m}$ FO2 - TTL $0.2 \mu \mathrm{~m}$ F05 - TTL $0.5 \mu \mathrm{~m}$ F10 - TLL $1.0 \mu \mathrm{~m}$ F25-TTL $2.5 \mu \mathrm{~m}$ F50 - TTL 5.0رm	0070-70 mm 0520-520 mm 3240-3240 mm	N - none RI S - standard M - every 50 mm K - distance coded Ln/XXX - n'RI with 50-fold steps $/$ XXX distance of the first RI from the beginning of ML, mm	$\begin{aligned} & 05- \pm 5 \mu \mathrm{~m} \\ & 10- \pm 10 \mu \mathrm{~m} \end{aligned}$	0 - without compressed air 1 - with compressed air	S - version S (cable outlet) C - version C (connector outlet)	01-1m 02-2m 03-3m CPO1-1m armoured CPO2 - 2 m armoured CPO3 - 3m armoured ...	W - without connector B12 - round, 12 pins C9-round, 9 pins C12 - round, 12 pins p9-flat, 9 pins D15 - flat, 15 pins RS10 - round, 10 pins ONC - round, 10 pins
ORDER EXAMPLE:		1) L18B-F10-2440-S-05-	-C-CP03/W				

PHOTOELECTRIC LINEAR ENCODER

The sealed linear encoder L18C is used to convert linear displacements of key machine components into electrical signals containing information about the value and direction of the displacement.

The encoder consists of a glass scale installed into a rigid hollow housing and a ball-bearing-guided reading head. To be able to work in harsh environments (lubricants and chips), the encoder has sealing lips. Filtered air can be supplied into the housing of the encoder for extra protection.

MECHANIGAL DATA

=L-GTRICAL DATA

VERSION	L18C-A $\sim 11 \mu \mathrm{App}$	L18C-AV $\sim 1 \mathrm{Vpp}$	L18C-F П】 TTL
Power supply	$+5 \mathrm{~V} \pm 5 \% /<90 \mathrm{~mA}$	$+5 \mathrm{~V} \pm 5 \%<120 \mathrm{~mA}$	$+5 \mathrm{~V} \pm 5 \% /<120 \mathrm{~mA}$
Light source	LED	LED	LED
Resolution	Depends on external subdividing electronics	Depends on external subdividing electronics	$5 ; 1 ; 2.5 ; 0.5 ; 0.2 ; 0.1 \mu \mathrm{~m}$ (after 4-fold dividing in subsequent electronics)
Incremental signals	Two sinusoidal I_{1} and I_{2} Amplitude at $1 \mathrm{k} \Omega$ load: $\begin{aligned} & -11=7-16 \mu \mathrm{~A} \\ & -12=7-16 \mu \mathrm{~A} \end{aligned}$	Differential sine $+\mathrm{A} /-\mathrm{A}$ and $+\mathrm{B} /-\mathrm{B}$ Amplitude at 120Ω load: $\begin{aligned} & -\mathrm{A}=0.6-1.2 \mathrm{~V} \\ & -\mathrm{B}=0.6-1.2 \mathrm{~V} \end{aligned}$	Differential square-wave U1/ $\overline{\mathrm{U} 1}$ and U2/ $\overline{\mathrm{U} 2}$. Signal levels at 20 mA load current: - low (logic "0") $\leq 0.5 \mathrm{~V}$ - high (logic " 1 ") $\geq 2.4 \mathrm{~V}$
Reference signal	Quasi-triangular I. Signal magnitude at $1 \mathrm{k} \Omega$ load: $-I_{0}=2-8 \mu \mathrm{~A}$	Quasi-triangular $+R$ and its complementary -R. Signals magnitude at 120Ω load $R=0.2-0.8 \mathrm{~V}$	One differential square-wave UO/UO per revolution. Signal levels at 20 mA load current: - low (logic "0") < 0.5V - high (logic " 1 ") $>2.4 \mathrm{~V}$
Maximum operating frequency	50 kHz	50 kHz	$50 x \mathrm{kHz}$, when interpolation factor is $1,2,5,10$ 1000 kHz when interpolation factor is 25,50
Direction of signals	I_{2} lags I_{1} at reading head displacement from left to right	B+ lags A+at reading head displacement from left to right	U2 lags U1 at reading head displacement from left to right
Standard cable length	3 m , without connector	3 m , without connector	3 m , without connector
Maximum cable length	5 m	25 m	25 m
Output signals			

Note: If cable extension is used the power supply conductor section should not be smaller than $0.5 \mathrm{~mm}^{2}$.

ACCESSORIES

CONNECTORS FOR CABLE	B12 12-pin round connector	C9 9 -pin round connector	C12 12-pin round connector	D9 9-pin flat connector	D15 15-pin flat connector	RS10 10-pin round connector	ONC 10-pin round connector	HR25 8 -pins round mini connector
DIGITAL READOUT DEVICES		CS3000			CS5000			
EXTERNAL INTERPOLATOR					NK			

ORDER FORM

L18C	$X X X-X / X X X-X X-X-X-X X / X$						
	1						
OUTPUT SIGNALS AND RESOLUTION:	MEASURING LENGTH:	REFERENCE MARKS:	ACCURACY:	COMPRESSED AIR:	CABLE OR CONNECTOR OUTLET:	CABLE LENGTH:	CONNECTOR TYPE:
A - Sinusoidal AV - Sinusoidal F01 - TTL $0.1 \mu \mathrm{~m}$ F02 - TLL $0.2 \mu \mathrm{~m}$ F10-TTL 1.0um F25 - TTL 2.5 um F50 - TTL $5.0 \mu \mathrm{~m}$	$0070-70 \mathrm{~mm}$ $0520-520 \mathrm{~mm}$ $3240-3240 \mathrm{~mm}$	N - none Ril S - standard M - every 50 mm K - distance coded $\operatorname{Ln} / X X X$ - n'RI with 50 -fold steps $/ X X X$ distance of the first RI from the beginning of ML, mm	$\begin{aligned} & 05- \pm 5 \mu \mathrm{~m} \\ & 10- \pm 10 \mu \mathrm{~m} \end{aligned}$	0 - without compressed air 1 - with compressed air	S - version S (cable outlet) C - version C (connector outlet)	$\begin{aligned} & 01-1 m \\ & 02-2 m \\ & 02-3 m \end{aligned}$ C̈P01-1m armoured CPO2 - 2 m amoured CPO3 - 3 m amoured	W - without connector B12 - round, 12 pins C9-round, 9 pins C12 - round, 12 pins D9 - flat, 9 pins D15 - flat, 15 pins ONC - round, 10 pins
ORDER EXAMPLE:		1) L18C-F10-2440-S-05-	C-CP03/				

PHOTOELECTRIC LINEAR ENCODER

The sealed linear encoder L18T is used to convert linear displacements of key machine components into electrical signals containing information about the value and direction of the displacement. The difference from encoder L18 series is that it has the other housing fixation and more stable thermal behaviour.
The encoder consists of a glass scale installed into a rigid hollow housing and a ball-bearing-guided reading head. To be able to work in harsh environments (lubricants and chips), the encoder has sealing lips. Filtered air can be supplied into the housing of the encoder for extra protection.

MECHANIGAL DATA

Measuring lengths (ML), mm

Accuracy grades to any metre within the ML (at $20^{\circ} \mathrm{C}$):

Grating period
Reference marks (RI):
-standard for ML $\leq 1020 \mathrm{~mm}$ -standard for ML > 1140 mm -optional

70; 120; 170; 220; 270; 320; 370; 420; 470; 520; 620; 720; 820; 920; 1020; 1140; 1240; (other intermediate lengths on request)
$\pm 10 ; \pm 5 ; \pm 3 \mu \mathrm{~m}$ (optional)
$20 \mu \mathrm{~m} ; 40 \mu \mathrm{~m}$ (optional)

35 mm from both ends of ML 45 mm from both ends of ML
one RI at any location, or two or more Rl's separated by distances of $\mathrm{n} \times 50 \mathrm{~mm}$ or distance-coded

The photoelectric unit of the reading head generates sinusoidal micro-current or TTL square-wave (standard RS422) output signals.
Three versions of output signals are available:

- L18T-A - Sinusoidal signals, with amplitude approx. $11 \mu \mathrm{App}$, require external subdividing electronics.
- L18T-AV - Sinusoidal signals, with amplitude approx. 1 Vpp , require external subdividing electronics.
- L18T- F - Square-wave, with integrated subdividing electronics for interpolation $x 1, x 2, x 5, x 10, x 25$, x50.

Max. traversing speed: -when interpolation factor is $1,2,5,10$ -when interpolation factor is 25 -when interpolation factor is 50	$\begin{aligned} & 1 \mathrm{~m} / \mathrm{s} \\ & 0.5 \mathrm{~m} / \mathrm{s} \\ & 0.4 \mathrm{~m} / \mathrm{s} \end{aligned}$
Required moving force with sealing lips	$<3 \mathrm{~N}$
Protection (IEC 529) -without compressed air -with compressed air (optional)	$\begin{aligned} & \text { IP53 } \\ & \text { IP64 } \end{aligned}$
Weight	$0.4 \mathrm{~kg}+0.8 \mathrm{~kg} / \mathrm{m}$
Operating temperature	$0 . . .+50^{\circ} \mathrm{C}$
Storage temperature	$-20 . . .+70^{\circ} \mathrm{C}$
Permissible vibration (40 to 2000 Hz)	$\leq 30 \mathrm{~m} / \mathrm{s}^{2}$
Permissible shock (11 ms)	$\leq 100 \mathrm{~m} / \mathrm{s}^{2}$

ELECTRIGAL DAIA

VERSION	L18T-A ${ }^{\text {c }} 11 \mu \mathrm{App}$	L18T-AV ~ 1 Vpp	L18T-F П-TTL
Power supply	$+5 \mathrm{~V} \pm 5 \% /<90 \mathrm{~mA}$	$+5 \mathrm{~V} \pm 5 \%<120 \mathrm{~mA}$	$+5 \mathrm{~V} \pm 5 \% /<120 \mathrm{~mA}$
Light source	LED	LED	LED
Resolution	Depends on external subdividing electronics	Depends on external subdividing electronics	5; 2.5; $1 ; 0.5 ; 0.2 ; 0.1 \mu \mathrm{~m}$ (after 4-fold dividing in subsequent electronics)
Incremental signals	Two sinusoidal I_{1} and I_{2} Amplitude at $1 \mathrm{k} \Omega$ load: $-11=7-16 \mu \mathrm{~A}$ $-12=7-16 \mu \mathrm{~A}$	Differential sine $+\mathrm{A} /-\mathrm{A}$ and $+\mathrm{B} /-\mathrm{B}$ Amplitude at 120Ω load: $\begin{aligned} -A & =0.6-1.2 \mathrm{~V} \\ -B & =0.6-1.2 \mathrm{~V} \end{aligned}$	Differential square-wave U1/V1 and U2/V2. Signal levels at 20 mA load current: - low (logic " 0 ") $\leq 0.5 \mathrm{~V}$ - high (logic "1") $\geq 2.4 \mathrm{~V}$
Reference signal	One quasi-triangular I I peak per revoIution. Signal magnitude at $1 \mathrm{k} \Omega$ load: $-I_{0}=2-8 \mu \mathrm{~A}$ (usable component)	One quasi-triangular $+R$ and its omplementary -R per revolution. Signals magnitude at 120Ω load - $\mathrm{R}=0.2-0.8 \mathrm{~V}$ (usable component)	One differential square-wave UO/U0 per revolution. Signal levels at 20 mA load current: - low (logic "0") < 0.5 V - high (logic "1") > 2.4 V
Maximum operating frequency	50 kHz	50 kHz	$50 x \mathrm{kHz}$, when interpolation factor is $1,2,5,10$ 1000 kHz when interpolation factor is 25,50
Direction of signals	I_{2} lags I_{1} at reading head displacement from left to right	B+ lags A+at reading head displacement from left to right	U2 lags U1 at reading head displacement from left to right
Standard cable length	3 m , without connector	3 m , without connector	3 m , without connector
Maximum cable length	5 m	25 m	25 m
Output signals			

Note: If cable extension is used the power supply conductor section should not be smaller than $0.5 \mathrm{~mm}^{2}$.

ACCESSORIES

	B12	C9	C12	D9	D15	RS10	ONC	HR25
CONNECTORS FOR CABLE	12-pin round	9-pin round	12-pin round	9-pin flat	15-pin flat	10-pin round	10-pin round	8-pins round
	connector	mini connector						

DIGITAL READOUT DEVICES

CS3000
CS5000

EXTERNAL INTERPOLATOR

NK

ORDER FORM

L18T	$X X X X-X / X X X-X X-x-x-X X / X$						
	\downarrow						
OUTPUT SIGNALS AND RESOLUTION:	MEASURING LENGTH:	REFERENCE MARKS:	ACCURACY:	COMPRESSED AIR:	CABLE OR CONNECTOR OUTLET:	CABLE LENGTH:	CONNECTOR TYPE:
A - Sinusoidal AV - Sinusoidal F01 - TTL $0.1 \mu \mathrm{~m}$ FO2 - TLL $0.2 \mu \mathrm{~m}$ F05 - TTL $0.5 \mu \mathrm{~m}$ F10 - TTL $1.0 \mu \mathrm{~m}$ F25-TTL $2.5 \mu \mathrm{~m}$ F50 - TTL $5.0 \mu \mathrm{~m}$	$\begin{aligned} & 0070-70 \mathrm{~mm} \\ & 0520-520 \mathrm{~mm} \\ & 1240-1240 \mathrm{~mm} \end{aligned}$	N - none RI S - standard M - every 50 mm K - distance coded $\operatorname{Ln} / X X X$ - n'RI with 50 -fold steps /XXX distance of the first RI from the beginning of ML, mm	$\begin{aligned} & 05- \pm 5 \mu \mathrm{~m} \\ & 10- \pm 10 \mu \mathrm{~m} \end{aligned}$	0 - without compressed air 1 - with compressed air	S - version S (cable outlet) C - version C (connector outlet)	01-1m 02-2m 03-3m C̈P01-1m armoured CPO2-2m armoured CPO3 - 3m armoured	W - without connector B12 - round, 12 pins C9-round, 9 pins C12 - round, 12 pins D15-flat, 15 pins RS10 - round, 10 pins ONC - round, 10 pins
ORDER EXAMPLE:		1) L18T-A-1240-K-05-1-C	03/C9				

PHOTOELECTRIC
 MODULAR LINEAR
 ENCODER

Modular sealed photoelectric linear encoder L23 has measuring length up to 20 meters and more on special order.

The encoder is used to convert linear displacements of machine key components into electrical signals containing information about the value and direction of the displacement.

The encoder operates in reflected from metal band light
MECHANIGAL DATA

Measuring lengths (ML), mm	$250,300,350,400,450,$ 500... 20000 (more on option)
Accuracy grades to any metre within the ML (at $20^{\circ} \mathrm{C}$)	$\pm 10 ; \pm 5 ; \pm 3 \mu \mathrm{~m}$
Grating period (T)	400; 40; $20 \mu \mathrm{~m}$
Max. traversing speed: - when $\mathrm{T}=400 \mu \mathrm{~m}$ and resolution 100, 50, $10 \mu \mathrm{~m}$ - when $\mathrm{T}=40 \mu \mathrm{~m}$ and: - resolution 10, $5 \mu \mathrm{~m}$ - resolution $1 \mu \mathrm{~m}$ - when $\mathrm{T}=20 \mu \mathrm{~m}$ and: - resolution $5 \mu \mathrm{~m}$ - resolution $0,5 \mu \mathrm{~m}$	120 m/min $80 \mathrm{~m} / \mathrm{min}$ $25 \mathrm{~m} / \mathrm{min}$ $60 \mathrm{~m} / \mathrm{mi}$ $12 \mathrm{~m} / \mathrm{min}$

beam. Metal band with made on its surface grating scale is fixed in rigid aluminium housing with double protection lips.

The encoder consists of several separate modules with length up to 3,0 m, which are jointed together, and reading head.

The standard encoder has three square-wave TTL output signals: 2 main signals, shifted by 90 degrees and one reference signal.

Reference marks (RI):	
-N	without reference mark
-M	every 50 mm
-P (optional)	RI number and place
Required moving force	$<4 \mathrm{~N}$
Protection (IEC 529) -without compressed air -with compressed air	IP54
Weight	IP64
Operating temperature	$0.4 \mathrm{~kg}+2.8 \mathrm{~kg} / \mathrm{m}$
Storage temperature	$0 \ldots+50^{\circ} \mathrm{C}$
Permissible vibration (10...2000 Hz$)$	$-20 \ldots+70^{\circ} \mathrm{C}$
Permissible shock (11 ms)	$\leq 100 \mathrm{~m} / \mathrm{s}^{2}$
Coefficient of thermal expansion	$\leq 150 \mathrm{~m} / \mathrm{s}^{2}$

ELECTRICAL DATA

VERSION	L23-F Пل TTL
Supply voltage (U_{p})	$\begin{aligned} & +5 \mathrm{~V} \pm 5 \% / 65 \mathrm{~mA} ; \\ & +12 \mathrm{~V} \pm 5 \% / 65 \mathrm{~mA} \end{aligned}$
Light source	LED
Resolution	100, 50; 10; 5; 1; $0.5 \mu \mathrm{~m}$ (after 4-fold in subsequent electronics)
Incremental signals	Differential square-wave U1/U1 and U2/U2
Reference signal	Differential square-wave U0/U0
Signal levels at load current 20 mA :	- low (logic "0") $<0.5 \mathrm{~V}$ at Up $=+5 \mathrm{~V}$ - high (logic " 1 ") $>2.4 \mathrm{~V}$ at $\mathrm{Up}=+5 \mathrm{~V}$ - low (logic "O") < 1.5 V at Up=+12V (HTL) - high (logic "1")>(Up-2) V at Up=+12V (HTL)
Direction of signals	U2 lags U1 (displacement from left to right and head position down)
Standard cable length	4 m armoured, without connector
Maximum cable length	25 m
Output signals	

Note: If cable extension is used the power supply conductor section should not be smaller than $0.5 \mathrm{~mm}^{2}$.

MODULE CONNECTION PRINCIPLE

ACCESSORIES

CONNECTORS FOR CABLE	B12 12-pin round connector	C9 9-pin round connector	C12 12-pin round connector	D9 9-pin flat connector	D15 15-pin flat connector	RS10 10-pin round connector	ONC 10-pin round connector
DIGITAL READOUT DEVICES		CS3000				000	

ORDER FORM

-K24
 PHOTOELECTRIC ABSOLUTE LINEAR ENCODER

The sealed absolute photoelectric encoder LK24 is used to convert linear displacements of key machine components into electrical signals containing information about components absolute position.

The encoder consists of a glass scale installed into a rigid hollow housing and a ball-bearing guided reading head. To be able to work in harsh environments (lubri-

MECHANIGAL DATA

Measuring lengths (ML), mm

Incremental signal
Resolution 1Vpp

Serial interface
Resolution absolute measure
Accuracy grades to any metre within the ML (at $20^{\circ} \mathrm{C}$)

- standard version
- high accuracy version

Grating period (T)
Max. traversing speed:
Max. acceleration
Required moving force

70, 120, 170, 220, 270, 320, 370, 420, 470, 520, 570, 620, 720, 770, 820, 920, 1024, 1140, 1240, 1340, 1440, 1540, 1640, 1740, 1840, 2040, 2240, 2440, 2640, 2840, 3040, 3240
sine wave 1 Vpp (optional)
up to $0.1 \mu \mathrm{~m}$ (depending on CNC division factor)

SSI or BiSS
$1 \mu \mathrm{~m}, 0.1 \mu \mathrm{~m}$
$\pm 3 \mu \mathrm{~m}$
$\pm 1 \mu \mathrm{~m}$
$20 \mu \mathrm{~m}$
$120 \mathrm{~m} / \mathrm{min}$
$30 \mathrm{~m} / \mathrm{s}$
$<4 \mathrm{~N} ; \leq 2.5 \mathrm{~N}$ on request
cants and chips), the encoder has double level sealing lips. Filtered air can be supplied into the housing of the encoder for extra protection.

The encoder has two versions of serial interface SSI or BiSS C. On option third encoder version is available: with 2 analog sinusoidal signals with phase shift 90° and amplitude approx. 1Vpp .

[^7]
SSI Version

Interface	SSI Binary - Gray
Signals level	EIA RS 485
Clock frequency	$0.1 \varnothing 1.2 \mathrm{MHz}$
n	Position bit
T_{c}	$10 \varnothing 20 \mu \mathrm{~s}$

BiSS C Version

Interface	BiSS C unidirectional
Signals level	EIA RS 485
Clock frequency	$0.1 \varnothing 4 \mathrm{MHz}$
n	$26+2+6$ bit
T_{c}	$12 \varnothing 20 \mu \mathrm{~s}$

CABL=

Serial output

Analog output + Serial output

Encoder is supplied with flexible cable, which is consisted of shielded twisted pairs of wires (for informational signals SSI-BiSS).

Cable for serial output:

- 6-wire shielded cable, $\varnothing=7 \mathrm{~mm}$, PVC external sheath, with low friction coefficient, oil-resistant, suitable for continuous movements
- conductors section: power supply 0.25 mm 2 , signals 0.25 mm 2
- cable's bending radius should not be lower than 35 mm .

In case of cable extension, it is necessary to guarantee:

- electrical connection between the body of the connectors and the cables shield;
- minimum power supply voltage of 5 V to the head.

Cable for analog output + serial output:

- 10-wire shielded cable, $\varnothing=7.1 \mathrm{~mm}$, PUR external sheath.
- conductors section: power supply 0.35 mm 2 , signals 0.10 mm2
- cable's bending radius should not be lower than 45 mm .

ACCESSORIES

B12	C9	C12	D9	D15	
CONNECTORS FOR CABLE	12-pin round connector	9-pin round connector	12-pin round connector	9-pin flat connector	15-pin flat connector

ORDER FORM

The precision sealed linear encoder L35 is used to convert linear displacements of key machine components into electrical signals containing information about the value and direction of the displacements.
The encoder consists of a glass scale installed into a rigid hollow housing and a ball-bearing-guided reading head. To be able to work in harsh environments (cooling liquid, lubricants and chips), the encoder has two rows of sealing lips. Filtered air can be supplied into the housing of the encoder for extra protection from dust.
Characteristic feature of encoder is a rigid housing that provides better resistance to vibration and higher protection grade due two pairs of sealing lips.

MECHANIGAL DATA

=LECTRIGAL DATA

VERSION	L35-A $\sim 11 \mu \mathrm{App}$	L35-AV $\sim 1 \mathrm{Vpp}$	L35-F Пل TTL; П- HTL
Power supply	$+5 \mathrm{~V} \pm 5 \% /<90 \mathrm{~mA}$	$+5 \mathrm{~V} \pm 5 \%<90 \mathrm{~mA}$	$+5 \mathrm{~V} \pm 5 \% /<120 \mathrm{~mA} ;+12 \mathrm{~V} \pm 5 \% /<130 \mathrm{~mA}$
Light source	LED	LED	LED
Resolution	Depends on external subdividing electronics	Depends on external subdividing electronics	5; 2.5; 1; 0.5; 0.2; 0.1 um (after 4-fold dividing in subsequent electronics)
Incremental signals	Two sinusoidal I1 and I2 Amplitude at $1 \mathrm{k} \Omega$ load: $\begin{aligned} -11 & =7-16 \mu \mathrm{~A} \\ -12 & =7-16 \mu \mathrm{~A} \end{aligned}$	Differential sine $+\mathrm{A}-\mathrm{A}$ and $+\mathrm{B} /-\mathrm{B}$ Amplitude at 120Ω load: $\begin{aligned} -A & =0.6-1.2 \mathrm{~V} \\ -B & =0.6-1.2 \mathrm{~V} \end{aligned}$	Differential square-wave U1/ $\overline{\mathrm{U} 1}$ and U2/(V2. Signal levels at 20 mA load current: - low (logic " 0 ") $\leq 0,5 \mathrm{~V}$ at $\mathrm{Up}=+5 \mathrm{~V}$ - high (logic " 1 ") $\geq 2,4 \mathrm{~V}$ at $\mathrm{Up}=+5 \mathrm{~V}$ - low (logic "0") $\leq 1,5 \mathrm{~V}$ at Up=+12V (HTL) - high (logic " 1 " $) \geq($ Up-2) V at $U p=+12 \mathrm{~V}$ (HTL)
Reference signal	One quasi-triangular I. Signal magnitude at $1 \mathrm{k} \Omega$ load: $-I_{0}=2-8 \mu \mathrm{~A}$ (usable component)	One quasi-triangular $+R$ and its complementary -R per revolution. Signals magnitude at 120Ω load - R = 0.2-0.8 V (usable component)	One differential square-wave UO/UO per revolution. Signal levels at 20 mA load current: - low (logic " 0 ") $\leq 0.5 \mathrm{~V}$ at $\mathrm{Up}=+5 \mathrm{~V}$ - high (logic "1") $\geq 2.4 \mathrm{~V}$ at $\mathrm{Up}=+5 \mathrm{~V}$ - low (logic "0") $\leq 1,5 \mathrm{~V}$ at Up $=+12 \mathrm{~V}$ (HTL) - high (logic "1") \geq (Up-2)V at Up=+12V(HTL)
Maximum operating frequency	$\begin{aligned} & 50 \mathrm{kHz}(\mathrm{v}=1 \mathrm{~m} / \mathrm{s}) \\ & 100 \mathrm{kHz}(\mathrm{v}=2 \mathrm{~m} / \mathrm{s} \text { shortly }) \end{aligned}$	$\begin{aligned} & 50 \mathrm{kHz}(\mathrm{v}=1 \mathrm{~m} / \mathrm{s}) \\ & 100 \mathrm{kHz}(\mathrm{v}=2 \mathrm{~m} / \mathrm{s} \text { shortly }) \end{aligned}$	$\begin{aligned} & (50 \times k) \mathrm{kHz} \text { for } \mathrm{k}=1,2,5,10 \\ & 1000 \mathrm{kHz} \text { for } \mathrm{k}=25,50, \\ & \text { where } \mathrm{k} \text { - interpolation factor } \end{aligned}$
Direction of signals (displacement from left to right)	I_{2} lags I_{1}	B+ lags A+	U_{2} lags U_{1}
Standard cable length	3 m , without connector	3 m , without connector	3 m , without connector
Maximum cable length	5 m	25 m	25 m
Output signals			

Note: If cable extension is used the power supply conductor section should not be smaller than $0.5 \mathrm{~mm}^{2}$.

ACCESSORIES

CONNECTORS FOR CABLE	B12 12-pin round connector	C9 9-pin round connector	$\mathrm{C} 12$ 12-pin round connector	$\begin{aligned} & \text { D9 } \\ & \text { 9-pin flat } \\ & \text { connector } \end{aligned}$	D15 15-pin flat connector	RS10 10-pin round connector	ONC 10-pin round connector	HR10A 12-pins round mini connecto

DIGITAL READOUT DEVICES	CS3000	CS5000
EXTERNAL INTERPOLATOR		

ORDER FORM

L35T

PHOTOELECTRIC LINEAR ENCODER

The precision sealed linear encoder L35T is used to convert linear displacements of key machine components into electrical signals containing information about the value and direction of the displacements.
The encoder consists of a glass scale installed into a rigid hollow housing and a ball-bearing-guided reading head. To be able to work in harsh environments (cooling liquid, lubricants and chips), the encoder has two rows of sealing lips. Filtered compressed air can be supplied into the housing of encoder for extra protection from dust.
Characteristic feature of encoder is a rigid housing that provides better resistance to vibration and higher protection grade due two pairs of sealing lips.

MECHANIGAL DATA

Measuring lengths (ML), mm	170; 220; 270; 320; 370; 420; 470; 520; 620; 720; 820; 920; 1020; 1140; 1240; 1340; 1440; 1540; 1640; 1740; 1840; 1940; 2040; 2140; 2240; 2340; 2440; 2540; 2640; 2740; 2840; 2940; 3040; 3140; 3240 (other intermediate lengths on request)
Accuracy grades to any metre within the ML (at $20^{\circ} \mathrm{C}$): - for ML from 170 up to 2040 mm - or ML from 2040 up to 3240 mm	$\begin{aligned} & \pm 5 ; \pm 3 ; \pm 2 \mu \mathrm{~m} \text { (optional) } \\ & \pm 10 \mu \mathrm{~m} \end{aligned}$
Grating period	$20 \mu \mathrm{~m} ; 40 \mu \mathrm{~m}$
Reference marks (RI): - standard for ML $\leq 1020 \mathrm{~mm}$ - standard for ML > 1140 mm - optional	35 mm from both ends of ML 45 mm from both ends of ML one RI at any location, two or more Rl's separated by distances of ($\mathrm{n} \times 50 \mathrm{~mm}$)

Mounting of encoder on the object is made through two end housings with built-in devices to enhance the thermal stability.
Reference marks can be selected by magnet, which moves in horizontal groove on the front side of encoder (optional).
Three versions of output signals are available:

- L35T-A - sinusoidal signals, with amplitude approx. 11μ App.
- L35T-AV -sinusoidal signals, with amplitude approx. 1 Vpp.
- L35T-F - square-wave signals, type TTL or HTL (standard RS422) with integrated subdividing electronics for interpolation $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 5, \mathrm{x} 10, \mathrm{x} 25, \mathrm{x} 50$.

- distance-coded	see drawing standard -one magnet (RI) in - selection by magnets
ML middle	

=LECTRIGAL DATA

VERSION	L35T-A $\sim 11 \mu$ App	L35T-AV $\sim 1 \mathrm{Vpp}$	L35T-FП TTL; ПЏ HTL
Power supply	$+5 \mathrm{~V} \pm 5 \% /<90 \mathrm{~mA}$	$+5 \mathrm{~V} \pm 5 \%<90 \mathrm{~mA}$	$+5 \mathrm{~V} \pm 5 \% /<120 \mathrm{~mA} ;+12 \mathrm{~V} \pm 5 \% /<130 \mathrm{~mA}$
Light source	LED	LED	LED
Resolution	Depends on external subdividing electronics	Depends on external subdividing electronics	5; 2.5; 1; 0.5; 0.2; 0.1 um (after 4-fold dividing in subsequent electronics)
Incremental signals	Two sinusoidal I1 and I2 Amplitude at $1 \mathrm{k} \Omega$ load: $-11=7-16 \mu \mathrm{~A}$ $-12=7-16 \mu \mathrm{~A}$	Differential sine $+\mathrm{A} /-\mathrm{A}$ and $+\mathrm{B} /-\mathrm{B}$ Amplitude at 120Ω load: $\begin{aligned} -A & =0.6-1.2 \mathrm{~V} \\ -B & =0.6-1.2 \mathrm{~V} \end{aligned}$	Differential square-wave U1/ $\overline{\mathrm{U} 1}$ and U2/(Ј2. Signal levels at 20 mA load current: - low (logic " 0 ") $\leq 0,5 \mathrm{~V}$ at Up $=+5 \mathrm{~V}$ - high $($ logic " 1 " $) \geq 2,4 \mathrm{~V}$ at $\mathrm{Up}=+5 \mathrm{~V}$ - low (logic " 0 ") $\leq 1,5 \mathrm{~V}$ at $\mathrm{Up}=+12 \mathrm{~V}$ (HTL) - high (logic "1") $\geq(U p-2) \vee$ at $U p=+12 \mathrm{~V}($ HTL $)$
Reference signal	One quasi-triangular I. Signal magnitude at $1 \mathrm{k} \Omega$ load: $-I_{0}=2-8 \mu \mathrm{~A}$ (usable component)	One quasi-triangular +R and its complementary -R per revolution. Signals magnitude at 120Ω load - R = 0.2-0.8 V (usable component)	One differential square-wave UO/UO per revolution. Signal levels at 20 mA load current: - low (logic " 0 ") $\leq 0.5 \mathrm{~V}$ at $\mathrm{Up}=+5 \mathrm{~V}$ - high (logic "1") $\geq 2.4 \mathrm{~V}$ at Up $=+5 \mathrm{~V}$ - low (logic " 0 ") $\leq 1,5 \mathrm{~V}$ at Up=+12V (HTL) - high (logic " 1 ") $\geq($ Up-2)V at $\mathrm{Up}=+12 \mathrm{~V}($ (HTL)
Maximum operating frequency	$\begin{aligned} & 50 \mathrm{kHz}(\mathrm{v}=1 \mathrm{~m} / \mathrm{s}) \\ & 100 \mathrm{kHz}(\mathrm{v}=2 \mathrm{~m} / \mathrm{s} \text { shortly }) \end{aligned}$	$\begin{aligned} & 50 \mathrm{kHz}(\mathrm{v}=1 \mathrm{~m} / \mathrm{s}) \\ & 100 \mathrm{kHz}(\mathrm{v}=2 \mathrm{~m} / \mathrm{s} \text { shortly }) \end{aligned}$	$\begin{aligned} & (50 \times k) k H z \text { for } k=1,2,5,10 \\ & 1000 \mathrm{kHz} \text { for } \mathrm{k}=25,50 \text {, } \\ & \text { where } \mathrm{k} \text { - interpolation factor } \end{aligned}$
Direction of signals (displacement from left to right)	1_{2} lags I_{1}	B+ lags A+	U_{2} lags U_{1}
Standard cable length	3 m , without connector	3 m , without connector	3 m , without connector
Maximum cable length	5 m	25 m	25 m
Output signals			

Note: If cable extension is used the power supply conductor section should not be smaller than $0.5 \mathrm{~mm}^{2}$.

ACCESSORIES

	B12		C12	D9		-	-	,
CONNECTORS FOR CABLE	12-pin round	9-pin round	12-pin round	9-pin flat	15-pin flat	10-pin round	10-pin round	12-pins round
							connector	mini connector

DIGITAL READOUT DEVICES

EXTERNAL INTERPOLATOR

ORDER FORM

PHOTOELECTRIC LINEAR ENCODER

The precision sealed linear encoder L37 is used to convert linear displacements of key machine components into electrical signals containing information about the value and direction of the displacements.
The encoder consists of a glass scale installed into a rigid hollow housing and a ball-bearing-guided reading head. To be able to work in harsh environments (cooling liquid, lubricants and chips), the encoder has two rows of sealing lips. Filtered air can be supplied into the housing of the encoder for extra protection from dust. The photoelectric unit of the reading head generates sinusoidal micro-current or square-wave output signals.

Characteristic feature of encoder is a rigid housing that provides better resistance to vibration and higher protection
MECHANICAL DATA

Measuring lengths (ML), mm	170; 220; 270; 320; 370; 420; 470; 520; 620; 720; 820; 920; 1020; 1140; 1240; 1340; 1440; 1540; 1640; 1740; 1840; 1940; 2040; 2140; 2240; 2340; 2440; 2540; 2640; 2740; 2840; 2940; 3040; 3140; 3240 (other intermediate lengths on request)
Accuracy grades to any metre within the ML (at $20^{\circ} \mathrm{C}$): - for ML from 170 up to 2040 mm - or ML from 2040 up to 3240 mm	$\begin{aligned} & \pm 5 ; \pm 3 \text { (optional) } \\ & \pm 10 \mu \mathrm{~m} \end{aligned}$
Grating period	$20 \mu \mathrm{~m} ; 40 \mu \mathrm{~m}$
Reference marks (RI): - standard for ML $\leq 1020 \mathrm{~mm}$ - standard for ML > 1140 mm - optional	35 mm from both ends of ML 45 mm from both ends of ML one RI at any location, two or more Rl's separated by distances of ($\mathrm{n} \times 50 \mathrm{~mm}$)

grade due two pairs of sealing lips.
Reference mark can be selected by magnet, which moves in horizontal groove on the front side of encoder (optional).
Three versions of output signals are available:

- L37-A - sinusoidal signals, with amplitude approx. $11 \mu \mathrm{App}$, require an external subdividing electronics.
- L37-AV- sinusoidal signals, with amplitude approx. 1 Vpp , require an external subdividing electronics.
- L37-F - square-wave signals, type TTL or HTL (standard RS422) with integrated subdividing electronics for interpolation $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 5, \mathrm{x} 10, \mathrm{x} 25, \mathrm{x} 50$.

- distance-coded	see drawing standard -one magnet (RI) in - selection by magnets
ML middle	

=LECTRIGAL DATA

VERSION	L37-A $\sim 11 \mu \mathrm{App}$	L37-AV $\sim 1 \mathrm{Vpp}$	L37-FП TTL; П- HTL
Power supply	$+5 \mathrm{~V} \pm 5 \% /<90 \mathrm{~mA}$	$+5 \mathrm{~V} \pm 5 \%<120 \mathrm{~mA}$	$+5 \mathrm{~V} \pm 5 \% /<120 \mathrm{~mA} ;+12 \mathrm{~V} \pm 5 \% /<130 \mathrm{~mA}$
Light source	LED	LED	LED
Resolution	Depends on external subdividing electronics	Depends on external subdividing electronics	5; 2.5; 1; 0.5; 0.2; 0.1 um (after 4-fold dividing in subsequent electronics)
Incremental signals	Two sinusoidal I1 and I2 Amplitude at $1 \mathrm{k} \Omega$ load: $\begin{aligned} & -11=7-16 \mu \mathrm{~A} \\ & -12=7-16 \mu \mathrm{~A} \end{aligned}$	Differential sine $+\mathrm{A}-\mathrm{A}$ and $+\mathrm{B} /-\mathrm{B}$ Amplitude at 120Ω load: $\begin{aligned} -A & =0.6-1.2 \mathrm{~V} \\ -B & =0.6-1.2 \mathrm{~V} \end{aligned}$	Differential square-wave U1/ $\overline{\mathrm{U} 1}$ and U2/(J2. Signal levels at 20 mA load current: - low (logic "0") $\leq 0,5 \mathrm{~V}$ at $\mathrm{Up}=+5 \mathrm{~V}$ - high (logic "1") $\geq 2,4 \mathrm{~V}$ at $\mathrm{Up}=+5 \mathrm{~V}$ - low (logic " 0 ") $\leq 1,5 \mathrm{~V}$ at Up=+12V (HTL) - high (logic "1") $\geq(\mathrm{Up}-2) \vee$ at $\mathrm{Up}=+12 \mathrm{~V}$ (HTL)
Reference signal	One quasi-triangular I . Signal magnitude at $1 \mathrm{k} \Omega$ load: $-I_{0}=2-8 \mu \mathrm{~A}$ (usable component)	One quasi-triangular $+R$ and its complementary -R per revolution. Signals magnitude at 120Ω load $-\mathrm{R}=0.2-0.8 \mathrm{~V}$ (usable component)	One differential square-wave UO/UO per revolution. Signal levels at 20 mA load current: low (logic " 0 ") $\leq 0.5 \mathrm{~V}$ at $\mathrm{Up}=+5 \mathrm{~V}$ high $($ logic " 1 ") $\geq 2.4 \mathrm{~V}$ at $\mathrm{Up}=+5 \mathrm{~V}$ - low (logic "0") $\leq 1,5 \mathrm{~V}$ at $\mathrm{Up}=+12 \mathrm{~V}$ (HTL) high (logic "1") $\geq($ Up-2)V at Up=+12V(HTL)
Maximum operating frequency	$\begin{aligned} & 50 \mathrm{kHz}(\mathrm{v}=1 \mathrm{~m} / \mathrm{s}) \\ & 100 \mathrm{kHz}(\mathrm{v}=2 \mathrm{~m} / \mathrm{s} \text { shortly }) \end{aligned}$	$\begin{aligned} & 50 \mathrm{kHz}(\mathrm{v}=1 \mathrm{~m} / \mathrm{s}) \\ & 100 \mathrm{kHz}(\mathrm{v}=2 \mathrm{~m} / \mathrm{s} \text { shortly }) \end{aligned}$	$\begin{aligned} & (50 \times k) \mathrm{kHz} \text { for } \mathrm{k}=1,2,5,10 \\ & 1000 \mathrm{kHz} \text { for } \mathrm{k}=25,50, \\ & \text { where } \mathrm{k} \text { - interpolation factor } \end{aligned}$
Direction of signals (displacement from left to right)	I_{2} lags I_{1}	B+ lags A+	U_{2} lags U_{1}
Standard cable length	3 m , without connector	3 m , without connector	3 m , without connector
Maximum cable length	5 m	25 m	25 m
Output signals			

Note: If cable extension is used the power supply conductor section should not be smaller than $0.5 \mathrm{~mm}^{2}$.

ACCESSORIES

CONNECTORS FOR CABLE	B12 12-pin round connector	C9 9 -pin round connector	C12 12-pin round connector	D9 9 -pin flat connector	D15 15-pin flat connector	RS10 10-pin round connector	ONC 10-pin round connector	HR10A 12-pins round mini connector
DIGITAL READOUT DEVICES		CS3000			CS5000			
EXTERNAL INTERPOLATOR					NK			

ORDER FORM

PHOTOELECTRIC LINEAR ENCODER

Modular photoelectric sealed linear encoder L50 has measuring length from 3240 mm up to 30040 mm .
The encoder is used to convert linear displacements of key machine components into electrical signals containing information about the value and direction of the displacement.
The encoder determines position by detecting light reflected of a metal band. Metal band with $40 \mu \mathrm{~m}$ pitch scale is fixed in rigid aluminium housing with protection lips.
The encoder consists of several separate rigid modules with length
MECHANICAL DATA

Measuring lengths (ML), mm	from 3240 up to 30040 (length of each module with steps 200 mm)
Accuracy grades to any metre within the ML (at $20^{\circ} \mathrm{C}$)	$\pm 10 \mu \mathrm{~m} / \mathrm{m}$
Grating period	$40 \mu \mathrm{~m}$
Reference marks (RI): - C - P - E	at coded distance 80 mm at constant step 50 mm selectable through magnet
Max. traversing speed	$1 \mathrm{~m} / \mathrm{min}$
Required moving force	$<6 \mathrm{~N}$

up to 2.0 m , which are joined together, and reading head.
Two versions of output signals are available:

- - L50-AV - Sinusoidal signals, with amplitude approx. 1 Vpp, require external
- subdividing electronics. Resolution $0.1 \mu \mathrm{~m}$ is possible with respective external electronics.
- - L50-F - Square-wave signals, with integrated subdividing electronics for interpolation $\times 1, x 2, x 5, x 10$.

Protection (IEC 529): -without compressed air -with compressed air	IP53
IP64	
Weight	$1.8 \mathrm{~kg}+3.3 \mathrm{~kg} / \mathrm{m}$
Operating temperature	$0 \ldots+50^{\circ} \mathrm{C}$
Storage temperature	$-20 \ldots+70^{\circ} \mathrm{C}$
Permissible vibration (10...2000 Hz)	$\leq 100 \mathrm{~m} / \mathrm{s}^{2}$
Permissible shock (11 ms)	$\leq 300 \mathrm{~m} / \mathrm{s}^{2}$
Coefficient of thermal expansion	$10.6 \times 10^{-6}{ }^{\circ} \mathrm{C}$

E-ECTRICAL DATA

VERSION	L50-AV $\sim 1 \mathrm{Vpp}$	L50-F [】 TTL
Power supply	$+5 \mathrm{~V} \pm 5 \% / 100 \mathrm{~mA}(120 \Omega)$	$+5 \mathrm{~V} \pm 5 \% / 150 \mathrm{~mA}$ (120 ${ }^{\text {) }}$
Light source	LED	LED
Resolution	Up to $0.1 \mu \mathrm{~m}$ depending on external subdividing electronics	10; $5 ; 1 ; 0.5 \mu \mathrm{~m}$ (after 4-fold dividing on subsequent electronics)
Incremental signals	Differential sine $+\mathrm{A} /-\mathrm{A}$ and $+\mathrm{B} /-\mathrm{B}$ Amplitude at 120Ω load: $\begin{aligned} & -I_{1}=0.6 \ldots 1.2 \mathrm{~V} \\ & -I_{2}=0.6 \ldots 1.2 \mathrm{~V} \end{aligned}$	Differential square-wave $\mathrm{U} 1 / \overline{\mathrm{U} 1}$ and $\mathrm{U} 2 / \overline{\mathrm{U} 2}$. Signal levels at 20 mA load current: - low (logic "O") $\leq 0.5 \mathrm{~V}$ - high (logic " 1 ") $\geq 2.4 \mathrm{~V}$
Reference signal	Quasi-triangular R Magnitude at 120Ω load: - $R=0.25-0.8 \mathrm{~V}$ (usable part)	One differential square-wave U0/U0 per revolution. Signal levels at 20 mA load current: - low (logic "O") $\leq 0.5 \mathrm{~V}$ - high (logic "1") $\geq 2.4 \mathrm{~V}$
Direction of signals	B lags A at reading head displacement from left to right	U2 lags U1 at reading head displacement from left to right
Electrical protection	inversion of power supply polarity and short circuit on output port	
Cable length (standard)	4 m	4 m
Maximal cable length (total with extension cable)	150 m	50 m

Output signals

CABLE CONNECTION

ACCESSORIES

CONNECTORS FOR CABLE

B12
12-pin round
connector
C12
12-pin round
connector

D9

9-pin flat con nector connector
 15-pin flat connector RS10 10-pin round connector

ONC 10-pin round connector

ORDER FORM

MAGNETIC LINEAR ENCODER

Non contact magnetic linear encoder MT has measuring length up to 50 m .
The encoder is used to convert linear displacements of key machine components into electrical signals containing information about the value and direction of the displacement.
Encoder consists of metal based magnetic band MP, reading head and protective steel cover CV. The length of magnetic band could be up to 50 m . Encoder could be supplied with external zero signal actuator (magnet), which allows usage one of many reference marks made on magnetic band.

MECHANIGAL DATA

	$\mathbf{M P x 0 0}$	$\mathbf{M P x 0 0 + C V}$	MPx00+SP
S(mm)	1.3	1.6	2.1
d(mm) MT P	$0.1 \div 0.5$	Not available	Not available
$d(\mathrm{~mm})$ MT M	$0.3 \div 1.5$	1.2 MAX	0.7 MAX
$d(\mathrm{~mm})$ MT H	$0.3 \div 3.5$	3.2 MAX	2.7 MAX

	D(MM)	
MTP (MP100)	Not available	Not available
MTM (MP200)	1.5 nom.	2.5 MAX
MTH (MP500)	1 nom.	2 MAX

MT-F PARAMETERS

Measuring length (ML)	up to 50 m (max. 20 m with MP500)
Repeatability	± 1 increment
Max. measuring frequency	300 kHz
Power supply	($5 . .28$) DC $\pm 5 \%$, V
Current consumption without load	60 mA max.
Current consumption with load	140 max. (with 5 V and $\mathrm{R}=120 \Omega$); 115 max (with 12 V and $\mathrm{R}=1.2 \mathrm{k} \Omega$) ; 90 max (with 28 V and $\mathrm{R}=1.2 \mathrm{k} \Omega$), mA
Phase shift between signals	$90^{\circ} \pm 5^{\circ}$
Protection (IEC 529)	IP67
Operating temperature	0... $+50{ }^{\circ} \mathrm{C}$
Storage temperature	$20 . .+80^{\circ} \mathrm{C}$
Permissible humidity	100\% non-condensing
Permissible vibration ($55 \ldots 2000 \mathrm{~Hz}$)	$300 \mathrm{~m} / \mathrm{s}^{2}$
Permissible shock (11 ms)	$1000 \mathrm{~m} / \mathrm{s}^{2}$
Output signal shape	Square-wave TTL pulses
Output signals	6 - two main + one zero signal and their complementary
Output scheme	Line driver (TTL optional)
Weight of reading head	40 g
Standard cable length	2.0 m
Max. cable length of head	10.0 m
Max. cable length of encoder (2 m of head + adapter)	100.0 m
Electrical protections	from inversion of power supply polarity; from short circuit on output port

READING HEAD MODIFICATIONS

READING HEAD	MTP-F	MTM-F	MTH-F
Reference (zero) signal *	Constant pitch every 1 mm (version C)	Constant pitch every 2 mm (version C) With external actuator (version E) Reference marks made on magnetic band according customer requirements (version Z)	Constant pitch every 5 mm (version C) With external actuator (version E) Reference marks made on magnetic band according customer requirements (version Z)
Pole pitch	$1+1 \mathrm{~mm}$	2+2 mm	$5+5 \mathrm{~mm}$
Accuracy **	$\pm 10 \mu \mathrm{~m}$	$\pm 15 \mu \mathrm{~m}$	$\pm 40 \mu \mathrm{~m}$
Resolution (after $\times 4$ in CNC)	0,5; 1; 5; $10 \mu \mathrm{~m}$	1; 5; 10; 25; 50; 100; 500; $1000 \mu \mathrm{~m}$	1; 5; 10; 25; 50; 100 mm
Max. traversing speed	0.6 (MTP-F05); 1,2 (MTP-F10) m/s	1.2 (MTM-F10); 12 (MTM-F100) m/s	6 (MTM-F50); 12 (MTM-F100) m/s

[^8]
MT - AV

Measuring length (ML)	up to 50 m (20 m with MP500)
Repeatability	± 1 increment
Max. traversing speed	$12 \mathrm{~m} / \mathrm{s}$
Power supply	(5 ... 28) DC $\pm 5 \%$, V
Current consumption without load	90 mA max.
Current consumption with load	110 mA max. (for 5V and $\mathrm{R}=120 \Omega$)
ØPhase shift between signals	$90^{\circ} \pm 5^{\circ}$
Protection (IEC 529)	IP67
Operating temperature	0... $+50{ }^{\circ} \mathrm{C}$
Storage temperature	$-20 . . .+80^{\circ} \mathrm{C}$
Permissible humidity	100\% non-condensing
Permissible vibration (10... 2000 Hz)	$300 \mathrm{~m} / \mathrm{s}^{2}$
Permissible shock (11 ms)	$1000 \mathrm{~m} / \mathrm{s}^{2}$
Output signal shape	Sine-wave
Output signals	Two main + one zero (square-wave pulse)
Output scheme	Line driver; TTL
Weight of reading head	40 g
Standard cable length	2.0 m
Max. cable length of head	10.0 m
Max. cable length of encoder (2 m of head + adapter)	100.0 m
Electrical protections	from inversion of power supply polarity; from short circuit on output port

READING HEAD MODIFICATIONS

READING HEAD	MTP-AV	MTM-AV	MTH-AV
Reference (zero) signal	Constant pitch every 1 mm (version C)	Constant pitch every 2 mm (version C) With external actuator (version E) Reference marks made on magnetic band according customer requirements (version Z)	Constant pitch every $2 \mathrm{~mm}($ version C) With external actuator (version E) Reference marks made on magnetic band according customer requirements (version Z)
Pole pitch	$1+1 \mathrm{~mm}$	$2+2 \mathrm{~mm}$	$5+5 \mathrm{~mm}$
Accuracy	$\pm 15 \mu \mathrm{~m}$	$\pm 40 \mu \mathrm{~m}$	
Resolution (depending on external interpolator) Max. measuring frequency	12 kHz	$6 \mathrm{up} \mathrm{to} 0,5 \mu \mathrm{~m}$	up to $1 \mu \mathrm{~m}$

MACN=TIC BAND

Accuracy (at $20^{\circ} \mathrm{C}$)	± 30 (standard); ± 15 (optional) $\mu \mathrm{m} / \mathrm{m}$
Width	10 mm
Thickness	1.3 mm
Length	50 m max. (20 m max.- for MP 500)
Thermal expansion coefficient	$10,5 \times 10^{-6} \mathrm{C}^{-1}\left(\right.$ at $\left.20^{\circ} \mathrm{C} \pm 0,1^{\circ} \mathrm{C}\right)$
Bend radius	130 mm min.
Weight of magnetic band	$65 \mathrm{~g} / \mathrm{m}$
Weight of protective cover	$25 \mathrm{~g} / \mathrm{m}$
Operating temperature	$0 \ldots+70^{\circ} \mathrm{C}$
Storage temperature	$-20 \ldots+80^{\circ} \mathrm{C}$

PROTECTIVE BAND CV

Stainless steel cover CV (width 10 mm , thickness $0,3 \mathrm{~mm}$) for magnetic band MP protection is glued on magnetic band (excluding MP100)

PROTECTIVE SUPPORT SP

Aluminium protective support SP for magnetic band MP protection. Fixed on machine surface and holds magnetic band. It is not possible to use the support SP if the magnetic band is already covered by stainless steel band CV.

MAGNETIC BAND	MP100	MP200/MP200Z	MP500/MP500Z
Pole pitch	$1+1 \mathrm{~mm}$	$2+2 \mathrm{~mm}$	$5+5 \mathrm{~mm}$
Reference mark position	-	on request from left or right at pitch- es of 4 mm or multiples	on request from left or right at pitch- es of 10 mm or multiples
	Note: With MP100 magnetic band, it is not	Note: Magnetic bang MP200Z is used only possible to use any protective cover (CVV or SP)	Note: Magnetic bang MP500Z is used only with reading head MTMxxxZ

COLOR OF GABLE WIRES AND OUTPUT SICNALS

ACCESSORIES

CONNECTORS FOR CABLE	B12 12-pin round connector	C12 12-pin round connector	D9 9-pin flat connector	D15 15-pin flat connector	RS10 10-pin round connector	ONC 10-pin round connector
DIGITAL READOUT DEVICES		CS3000			CS5000	

ORDER FORM

CMT MAGNETIC LINEAR ENCODER

Non contact magnetic linear encoder CMT has measuring length up to 50 m .

The encoder is used to convert linear displacements of key machine components into electrical signals containing information about the value and direction of the displacement.

The encoder is intended to use in particular heavy conditions. It is protected against products of technological processes and mechanical actions.
Encoder consists of metal based magnetic band MP, reading head and profile rail PS with protective band. The length of magnetic band could be up to 50 m .

Encoder could be supplied with external zero signal actuator (magnet), which allows usage one of many reference marks made on magnetic band. Zero signal actuator is not necessary if the magnetic band with reference marks made according customer requirements (MP200Z) is used. The reading head has LED, which indicates the reference mark passage by head.
Two versions of output signals are available:

- CMT - Square-wave signals, with integrated subdividing electronics for interpolation.
- CMT - Sinusoidal signals, with amplitude approx. 1 Vpp, which require external subdividing electronics.

MECHANICAL DATA
 the lowest possible (in the indicated range).

CMTEF PARAMETERS

Measuring length (ML)	up to 50 m (20 m with MP500)
Repeatability	± 1 increment
Max. measuring frequency	300 kHz
Power supply	(5 ... 28) DC $\pm 5 \%$, V
Current consumption without load	60 mA max.
Current consumption with load	140 max. (with 5 V and $\mathrm{R}=120 \Omega$); 115 max (with 12 V and $\mathrm{R}=1.2 \mathrm{k} \Omega$) ; 90 max (with 28 V and $\mathrm{R}=1.2 \mathrm{k} \Omega$), mA
Phase shift between signals	$90^{\circ} \pm 5^{\circ}$
Protection (IEC 529)	IP67
Operating temperature	0... $+50^{\circ} \mathrm{C}$
Storage temperature	$-20 . .+80^{\circ} \mathrm{C}$
Permissible humidity	100\% non-condensing
Permissible vibration (55... 2000 Hz)	$300 \mathrm{~m} / \mathrm{s}^{2}$
Permissible shock (11 ms)	$1000 \mathrm{~m} / \mathrm{s}^{2}$
Output signal shape	Square-wave TTL pulses
Output signals	6 - two main + one zero signal and their complementary
Output scheme	Line driver (TTL optional)
Weight of reading head	40 g
Standard cable length	2.0 m
Max. cable length of head	10.0 m
Max. cable length of encoder (2 m of head + adapter)	100.0 m
Electrical protections	From inversion of power supply polarity; from short circuit on output port

READING HEAD MODIFICATIONS

READING HEAD	CMTP-F	CMTM-F	CMTH-F
Reference (zero) signal *	Constant pitch every 1 mm (version C)	Constant pitch every 2 mm (version C) With external actuator (version E) Reference marks made on magnetic band according customer requirements (version Z)	Constant pitch every 5 mm (version C) With external actuator (version E) Reference marks made on magnetic band according customer requirements (version Z)
Pole pitch	$1+1 \mathrm{~mm}$	2+2 mm	$5+5 \mathrm{~mm}$
Accuracy **	$\pm 10 \mu \mathrm{~m}$	$\pm 15 \mu \mathrm{~m}$	$\pm 40 \mu \mathrm{~m}$
Resolution (after $\times 4$ in CNC)	0,5; 1; 5; $10 \mu \mathrm{~m}$	1; 5; 10; 25; 50; 100; 500; $1000 \mu \mathrm{~m}$	1; 5; 10; 25; 50; 100 mm
Max. traversing speed	0.6 (CMTP-F05); 1,2 (CMTP-F10) m / s	1.2 (CMTM-F10); 12 (CMTM-F100) m / s	6 (CMTH-F50); 12 (CMTH-F100) m/s

[^9]GMT - AV

Measuring length (ML)	up to 50 m (20 m with MP500)
Repeatability	± 1 increment
Max. measuring frequency	300 kHz
Power supply	(5 ... 28) DC $\pm 5 \%$, V
Current consumption without load	60 mA max.
Current consumption with load	140 max. (with 5 V and $\mathrm{R}=120 \Omega$); 115 max (with 12 V and $\mathrm{R}=1,2 \mathrm{k} \Omega$) 90 max (with 28 V and $R=1,2 \mathrm{k} \Omega$) mA
Phase shift between signals	$90^{\circ} \pm 5^{\circ}$
Protection (IEC 529)	IP67
Operating temperature	$0 . . .+50^{\circ} \mathrm{C}$
Storage temperature	$20 . . .+80^{\circ} \mathrm{C}$
Permissible humidity	100\% non-condensing
Permissible vibration (10... 2000 Hz)	$300 \mathrm{~m} / \mathrm{s}^{2}$
Permissible shock (11 ms)	$1000 \mathrm{~m} / \mathrm{s}^{2}$
Output signal shape	Sine-wave
Output signals	Two main + one zero (square-wave pulse)
Output scheme	Line driver; TTL
Weight of reading head	100 g
Standard cable length	2.0 m
Max. cable length of head	10.0 m
Max. cable length of encoder (2 m of head + adapter)	$100.0 \text { m }$

READING HEAD MODIFIGATIONS

READING HEAD	CMTP-AV	CMTM-AV	CMTH-AV
Reference (zero) signal	Constant pitch every 1 mm (version C)	Constant pitch every 2 mm (version C) With external actuator (version E)	Constant pitch every 5 mm (version C) With external actuator (version E)
Pole pitch	$1+1 \mathrm{~mm}$	$2+2 \mathrm{~mm}$	$5+5 \mathrm{~mm}$
Accuracy	$\pm 10 \mu \mathrm{~m}$	$\pm 15 \mu \mathrm{~m}$	$\pm 40 \mu \mathrm{~m}$
Resolution (depending on external interpolator)	up to $0,1 \mu \mathrm{~m}$	up to $0,5 \mu \mathrm{~m}$	$\mathrm{up} \mathrm{to} 1 \mu \mathrm{~m}$
Max. measuring frequency	12 kHz	6 kHz	2.4 kHz

MACN=TIC BAND

Accuracy (at $20^{\circ} \mathrm{C}$)	± 30 (standard); ± 15 (optional) $\mu \mathrm{m} / \mathrm{m}$
Width	10 mm
Thickness	1.3 mm
Length	$50 \mathrm{~m} \mathrm{max}.(20 \mathrm{~m}$ max.- for MP 500$)$
Thermal expansion coefficient	$10,5 \times 10^{-6}{ }^{\circ} \mathrm{C}^{-1}\left(\right.$ at $\left.20^{\circ} \mathrm{C} \pm 0,1^{\circ} \mathrm{C}\right)$
Bend radius	80 mm min.
Weight of magnetic band	$65 \mathrm{~g} / \mathrm{m}$
Weight of protective cover	$25 \mathrm{~g} / \mathrm{m}$
Operating temperature,	$0 \ldots+70^{\circ} \mathrm{C}$
Storage temperature	$-20 \ldots+80^{\circ} \mathrm{C}$

[^10]
PROFILE RAIL PS

Length of one module (standard)	1 m
Length	$1 \ldots 50 \mathrm{~m}$ (pitch 1 m)
Width and height	$25 \times 10 \mathrm{~mm}$
Material	aluminium

Profile rail PS with protective band SB is used for support of magnetic band with width 10 mm . Profile rail is easy mounted and has not adhesive joints. The lengths of more than 1 m are obtained by joining together several rail modules.

PROTECTIVE BAND SB

Length (standard)	1 m
Length	profile rail +36 mm
Adhesive tape	not required with PS
Material	stainless steel

MACN=TIC BAND MODIFIGATIONS

MAGNETIC BAND	MP100	MP200/MP200Z	MP500/MP500Z
Pole pitch	$1+1 \mathrm{~mm}$	$2+2 \mathrm{~mm}$	$5+5 \mathrm{~mm}$
Reference mark position	-	on request from left or right at pitch- es of 4 mm or multiples	on request from left or right at pitch- es of 10 mm or multiples
	Note: With MP100 magnetic band, it is not possible to use any protective cover (CV or SP)	Note: Magnetic bang MP200Z is used only with reading head MTMxxxZ	Note: Magnetic bang MP500Z is used only with reading head MTXxxxZ

GOLOR OF GABLE WIRES AND OUTPUT SIGNALS

	CMT-F		CMT-AV		
Green	U1	$\begin{gathered} \mathrm{a}=0,25 \mathrm{~T} \pm 0,125 \mathrm{~T} \\ \mathrm{~T} \end{gathered}$	A	$360^{\circ} \mathrm{el}$.	A and B amplitude 0,6 V...1,2 V ($\sim 1 \mathrm{~V}$)
White	U2		B	.	R amplitude 0,25...0,6V (useful part)
Red	(5...28)V	, a, a, a, a	(5...28)V	$\stackrel{90^{\circ} \mathrm{el}}{\stackrel{\text { er }}{ }}$	A and B phase shift $90^{\circ} \pm 10^{\circ} \mathrm{el}$.
Blue	OV	$\square \mathrm{U} 1$	OV	A	Reference voltage $\cup 02,5 \mathrm{~V}$
Brown	U0	- $\overline{\mathrm{U} 1}$	R	1 B	Amplitudes of signals are refetred to mea-
Orange	U1	- U2	\bar{A}		surement made with 120Ω impedance
Light-blue	Ū2	U2	B	U0 $0 \cdot \sim$	and power supply voltage of reading head $5 \mathrm{~V} \pm 5 \%$.
Yellow	Ū0	U0	R	$1{ }_{360^{\circ} \text { el }}$	
Shield	Shield	- U 0	Shield		

ACCESSORIES

CONNECTORS FOR CABLE	B12 12-pin round connector	C12 12-pin round connector	D9 9-pin flat connector	D15 15-pin flat connector	RS10 10-pin round connector	ONC 10-pin round connector
DIGITAL READOUT DEVICES		CS3000			CS5000	

ORDER FORM

PCMT-F

MAGNETIC LINEAR ENCODER

The encoder is used to convert linear displacements of key machine components into electrical signals containing information about the value and direction of the displacement.
The encoder is intended to use in particular heavy conditions. It is protected against products of technological processes and mechanical actions.

Encoder consists of metal based magnetic band MP, reading head and profile rail PS with protective band. The length of magnetic band could be up to 50 m (MP500 up to 20 m).

Encoder could be supplied with external zero signal actuator (magnet), which allows usage one of many
reference marks made on magnetic band. Zero signal actuator is not necessary if the magnetic band with reference marks made according customer requirements (MP200Z) is used. The
reading head has LED, which indicates the reference mark passage through head. In encoder PCMT the compressed air ($\mathrm{P}=600 \mathrm{kPa}$) is blowed into case of head to clean the rail surface from small fragments.
Two versions of output signals are available:

- - PCMT-F - Square-wave signals, with integrated subdividing electronics for interpolation.
- - PCMT-AV - Sinusoidal signals, with amplitude approx. 1 Vpp , which require external subdividing electronics.

MECHANICAL DATA

Warning: To get the best accuracy distance d must be the lowest possible (in the indicated range).

PGMTF PARAM=TERS

Measuring length (ML)	up to 50 m (20 m with MP500)
Repeatability	± 1 increment
Max. measuring frequency	300 kHz
Power supply	(5 ... 28) DC $\pm 5 \%$, V
Current consumption without load	60 mA max.
Current consumption with load	140 max. (with 5 V and $\mathrm{R}=120 \Omega$); 115 max (with 12 V and $\mathrm{R}=1.2 \mathrm{k} \Omega$) ; 90 max (with 28 V and $R=1.2 \mathrm{k} \Omega$), mA
Phase shift between signals	$90^{\circ} \pm 5^{\circ}$
Protection (IEC 529)	IP67
Operating temperature	$0 . . .+50^{\circ} \mathrm{C}$
Storage temperature	$-20 . . .+80^{\circ} \mathrm{C}$
Permissible humidity	100\% non-condensing
Permissible vibration (55... 2000 Hz)	$300 \mathrm{~m} / \mathrm{s}^{2}$
Permissible shock (11 ms)	$1000 \mathrm{~m} / \mathrm{s}^{2}$
Output signal shape	Square-wave TTL pulses
Output signals	6 - two main + one zero signal and their complementary
Output scheme	Line driver (TTL optional)
Weight of reading head	150 g
Standard cable length	2.0 m
Max. cable length of head	10.0 m
Max. cable length of encoder (2 m of head + adapter)	100.0 m
Electrical protections	from inversion of power supply polarity; from short circuit on output port

READING HEAD MODIFIGATIONS

READING HEAD	PCMTP-F	PCMTM-F	PCMTH-F
Reference (zero) signal *	Constant pitch every 1 mm (version C)	Constant pitch every 2 mm (version C) With external actuator (version E) Reference marks made on magnetic band according customer requirements (version Z)	Constant pitch every 5 mm (version C) With external actuator (version E) Reference marks made on magnetic band according customer requirements (version Z)
Pole pitch	$1+1 \mathrm{~mm}$	2+2 mm	$5+5 \mathrm{~mm}$
Accuracy **	$\pm 10 \mu \mathrm{~m}$	$\pm 15 \mu \mathrm{~m}$	$\pm 40 \mu \mathrm{~m}$
Resolution (after $\times 4$ in CNC)	0,5; 1; 5; $10 \mu \mathrm{~m}$	1; 5; 10; 25; 50; 100; 500; $1000 \mu \mathrm{~m}$	1; 5; 10; 25; 50; 100 mm
Max. traversing speed	0.6 (PCMTP-F05); 1,2 (PC-MTP-F10) m/s	1.2 (PCMTM-F10); 12 (PCMTM-F100) m / s	6 (PCMTH-F50); 12 (PCMTH-F100) m / s

*Version C - without reference signal
Version E - zero signal is generated when external zero actuator acts to reference mark, which is made on magnetic band.
It is possible to use several actuators.
Version Z - zero signal is generated when reference mark is acted by actuator incorporated into reading head
${ }^{* *}$ The smaller is the gap between reading head and magnetic band the better is accuracy of encoder.

PCMT - AV

Measuring length (ML)	up to 50 m (20 m with MP500)
Repeatability	± 1 increment
Max. measuring frequency	300 kHz
Power supply	(5 ... 28) DC $\pm 5 \%$, V
Current consumption without load	60 mA max.
Current consumption with load	140 max. (with 5 V and $\mathrm{R}=120 \Omega$); 115 max (with 12 V and $\mathrm{R}=1,2 \mathrm{k} \Omega$) 90 max (with 28 V and $R=1,2 \mathrm{k} \Omega$) mA
Phase shift between signals	$90^{\circ} \pm 5^{\circ}$
Protection (IEC 529)	IP67
Operating temperature	0... $+50^{\circ} \mathrm{C}$
Storage temperature	$20 . .+80^{\circ} \mathrm{C}$
Permissible humidity	100\% non-condensing
Permissible vibration (10... 2000 Hz)	$300 \mathrm{~m} / \mathrm{s}^{2}$
Permissible shock (11 ms)	$1000 \mathrm{~m} / \mathrm{s}^{2}$
Output signal shape	Sine-wave
Output signals	Two main + one zero (square-wave pulse)
Output scheme	Line driver; TTL
Weight of reading head	100 g
Standard cable length	2.0 m
Max. cable length of head	10.0 m
Max. cable length of encoder (2 m of head + adapter)	100.0 m

READING HEAD MODIFIGATIONS

READING HEAD	PCMTP-AV	PCMTM-AV	PCMTH-AV
Reference (zero) signal	Constant pitch every 1 mm (version C)	Constant pitch every 2 mm (version C) With external actuator (version E)	Constant pitch every 2 mm (version C) With external actuator (version E)
Pole pitch	$1+1 \mathrm{~mm}$	$2+2 \mathrm{~mm}$	$5+5 \mathrm{~mm}$
Accuracy	$\pm 10 \mu \mathrm{~m}$	$\pm 15 \mu \mathrm{~m}$	$\pm 40 \mu \mathrm{~m}$
Resolution (depending on external interpolator)	up to $0,1 \mu \mathrm{~m}$	up to $0,5 \mu \mathrm{~m}$	$\mathrm{up} \mathrm{to} 1 \mu \mathrm{~m}$
Max. measuring frequency	12 kHz	6 kHz	2.4 kHz

MACN=TIC BAND

Accuracy (at $20^{\circ} \mathrm{C}$)	± 30 (standard); ± 15 (optional) $\mu \mathrm{m} / \mathrm{m}$
Width	10 mm
Thickness	1.3 mm
Length	$50 \mathrm{~m} \mathrm{max}$. (20 m max.- for MP 500)
Thermal expansion coefficient	$10,5 \times 10^{-6}{ }^{\circ} \mathrm{C}-1\left(\right.$ at $\left.20^{\circ} \mathrm{C} \pm 0,1^{\circ} \mathrm{C}\right)$
Bend radius	$80 \mathrm{~mm} \mathrm{min}$.
Weight of magnetic band	$65 \mathrm{~g} / \mathrm{m}$
Operating temperature,	$0 \ldots+70^{\circ} \mathrm{C}$
Storage temperature	$-20 \ldots+80^{\circ} \mathrm{C}$

[^11]
PROFILE RAIL PS

Length of one module (standard)	1 m
Length	$1 \ldots 50 \mathrm{~m}$ (pitch 1 m)
Width and height	$25 \times 10 \mathrm{~mm}$
Material	aluminium

Profile rail PS with protective band SB is used for support of magnetic band with width 10 mm . Profile rail is easy mounted and has not adhesive joints. The lengths of more than 1 m are obtained by joining together several rail modules.

PROTECTIVE BAND SB

Length (standard)	1 m
Length	profile rail +36 mm
Adhesive tape	not required with PS
Material	stainless steel

MACNETIC BAND MODIFIGATIONS

MAGNETIC BAND	MP100	MP200/MP200Z	MP500/MP5002
Pole pitch	$1+1 \mathrm{~mm}$	$2+2 \mathrm{~mm}$	$5+5 \mathrm{~mm}$
Reference mark position	-	on request from left or right at pitch- es of 4 mm or multiples	on request from left or right at pitch- es of 10 mm or multiples
	Note: With MP100 magnetic band, it is not possible to use any protective cover (CV or SP)	Note: Magnetic bang MP200Z is used only with reading head MTMxxxZ	Note: Magnetic bang MP500Z is used only with reading head MTXXxxZ

GOLOR OF GABLE WIRES AND OUTPUT SICNALS

ACCESSORIES

CONNECTORS FOR CABLE	B12 12-pin round connector	C12 12-pin round connector	D9 9-pin flat connector	D15 15-pin flat connector	RS10 10-pin round connector	ONC 10-pin round connector
DIGITAL READOUT DEVICES		CS3000			CS5000	

ORDER FORM

MAGNETIC ABSOLUTE LINEAR ENCODER

Non contact absolute magnetic linear encoder MK has measuring length up to 30 m .
The encoder is used to convert linear displacements of key machine components into electrical signals containing information about components absolute position.
Encoder consists of metal based magnetic band MP, reading head and protective steel cover CV. Encoder
also could be supplied with protective aluminium support SP (instead protective cover CV), which is mounted on machine for magnetic band protection.

The encoder has two versions of serial interface SSI or BiSS C. On option third encoder version is available: with 2 analog sinusoidal signals with phase shift $90^{\circ} \mathrm{C}$ and amplitude approx. 1Vpp

MECHANIGAL DATA

Permissible tolerances for reading head mounting

MK PARAMETERS

Pole pitch	$2+2 \mathrm{~mm}$
Measuring length (ML)	up to 30 m
Incremental signal	since wave 1Vpp (optional)
Resolution 1Vpp	up to $1 \mu \mathrm{~m}$ (depending on CNC division factor)
Repeatability	± 1 increment
Signal period	2 mm
Serial interface	SSI or BiSS
Resolution absolute position	$500,100,50,10,5,1 \mu \mathrm{~m}$
Accuracy	$\pm 15 \mu \mathrm{~m}$
Max. traversing speed	$300 \mathrm{~m} / \mathrm{min}$
Power supply	$(5 \ldots 28 \mathrm{~V}$) DC $\pm 5 \%$
Current consumption with load	$150 \mathrm{~mA} \mathrm{max}. \mathrm{(with} \mathrm{R=120} \mathrm{\Omega)}$

Protection (EN 60529)	IP67		
Operating temperature	$0 \ldots+50^{\circ} \mathrm{C}$		
Storage temperature	$-20 \ldots+70^{\circ} \mathrm{C}$		
Permissible humidity	100%		
Permissible vibration (55...2000 Hz)	$200 \mathrm{~m} / \mathrm{s}^{2}$		Permissible shock (11 ms)
:---			
Weight of reading head			
Electrical protections			
from inversion of power			
Supply polarity and from short			
Circuit on output port			

CABLE

Cable for serial output:

- 6 -wire shielded cable, $\varnothing=7 \mathrm{~mm}$, PVC external sheath, with low friction coefficient, oil-resistant, suitable for continuous movements
- conductors section: supply 0.25 mm 2 , signals 0.25 mm 2
- cable's bending radius should not be lower than 35 mm .

NOTE: Encoder is supplied with flexible cable, that consists of twisted pair of wires (for informational signals SSI-BiSS).

PROTECTIVE BAND CV

Stainless steel cover CV (width 10 mm , thickness $0,3 \mathrm{~mm}$) for magnetic band MP protection is glued on magnetic band.

MP

PROTECTIVE SUPPORT SP

Aluminium protective support SP for magnetic band MP protection. Fixed on machine surface and holds magnetic band. It is not possible to use the support SP if the magnetic band is already covered by stainless steel band CV .

ACC=SSORIES

Cable for analog output + serial output:

- 10 -wire shielded cable, $\varnothing=7.1 \mathrm{~mm}$, PUR external sheath. Inside the cable, a further shield for the twisted pair of the digital signals (SSI-BiSS) is presented. -conductors section: supply 0.35 mm 2 , signals 0.10 mm 2 - cable's bending radius should not be lower than 45 mm . In case of cable extension, it is necessary to guarantee: - electrical connection between the body of the connectors and the cables shield;
- minimum power supply voltage of 5 V to the head.

MACN=TIC BAND MP200A

Pole pitch	$2+2 \mathrm{~mm}$
Accuracy (at $20^{\circ} \mathrm{C}$)	$\pm 20 ; \pm 80 \mu \mathrm{~m} / \mathrm{m}$
Width	10 mm
Thickness	$1,3 \mathrm{~mm}$
Length	30 m max.
Bend radius	80 mm min.
Weight of magnetic band	$65 \mathrm{~g} / \mathrm{m}$
Weight of protective cover	$25 \mathrm{~g} / \mathrm{m}$
Operating temperature	$0 \ldots+70{ }^{\circ} \mathrm{C}$
Storage temperature	$20 \ldots+80^{\circ} \mathrm{C}$

DIGITAL READOUT DEVICES

B12
12-pin round connector

C12
12-pin round connector

D9
9 -pin flat connector

D15 15-pin flat

CS3000

10-pin round

CS5000

SC

ENCODER COUPLINGS

Coupling is a device which connects two shafts with for purpose of transmissioning motion. Coupling compensates geometrical misalignments and axial motion of connected shafts, enables the encoder work within specified accuracy and prevents excessive bearing load.

Permissible shaft misalignments must be kept within limits as shown in the table below.

MECHANIGAL DATA

Coupling model	SC30	SC70	SC98-1	SC98-2
Kinematic accuracy (with parallel offset $\leq 0.05 \mathrm{~mm}$ and angular misalignment $\leq 0.09^{\circ}$)	± 10 arc sec	± 2 arc sec	± 0.5 arc sec	± 1 arc sec
Torsional rigidity	$150 \mathrm{Nm} / \mathrm{rad}$	4000 Nm/rad	$6000 \mathrm{Nm} / \mathrm{rad}$	$4000 \mathrm{Nm} / \mathrm{rad}$
Permissible torque	0.1 Nm	0.5 Nm	1 Nm	1 Nm
Moment of inertia (approx.)	$3 \times 10^{-6} \mathrm{kgm}^{2}$	$2 \times 10^{-4} \mathrm{kgm}^{2}$	$2 \times 10^{-4} \mathrm{kgm}$	$1.7 \times 10^{-4} \mathrm{kgm}^{2}$
Permissible radial misalignment	$\leq 0.2 \mathrm{~mm}$	$\leq 0.3 \mathrm{~mm}$	$\leq 0.3 \mathrm{~mm}$	$\leq 0.3 \mathrm{~mm}$
Permissible angular error	$\leq 1^{\circ}$	$\leq 0.5{ }^{\circ}$	$\leq 1^{\circ}$	$\leq 2^{\circ}$
Permissible axial misalignment	$\leq 0.2 \mathrm{~mm}$	$\leq 0.2 \mathrm{~mm}$	$\leq 0.2 \mathrm{~mm}$	$\leq 0.2 \mathrm{~mm}$
Permissible shaft speed	16000 rpm	3000 rpm	1000 rpm	1000 rpm
Weight	0.027 kg	0.22 kg	0.25 kg	0.21 kg
Encoder compatibility	A28, A36, AK36, AM36 AK50, A58M, A58B, A58C, A58C2, A58C3, A58D, AK58M, AK58B, AK58C, AK58C2, AK58C3, AK58D, AP58, AM58M, AM58B, AM58C, AM58C2, AM58C3, AM58D.	A110	A170	A170

SC30

SC70

ORDER FORM

NK

EXTERNAL
 INTERPOLATOR

The Interpolation and Digitizing electronics interpolates up to 10 -fold and convert the sinusoidal scanning signals from photoelectric encoders to square-wave pulses with TTL levels.
Possible interpolation factor: 1, 2, 3, 4, 5, 8, 10.
Under the cover the unit has commutation switch that allows to Customer to change interpolation factor (see table below)..

MECHANIGAL DATA

Input signals： －Incremental signals －Reference signal	$\begin{aligned} & 7-16 \mathrm{~mA} \\ & 2-8 \mathrm{~mA} \end{aligned}$
Output signals	TTL（RS422）compatible
Operating voltage	5 V
Max input frequency	50 kHz
Possible input connector／cable	C9，D9，D15，ONC，RS10／cable，armoured cable
Possible output connector／cable	C12，D9，D15，ONC，RS10／cable，armoured cable
Signal interpolation： －NK－1 －NK－2 －NK－3 －NK－4 －NK－5 －NK－8 －NK－10	1 －fold 2 －fold 3 －fold 4 －fold 5 －fold 8 －fold 10 －fold
Encoder compatibility	A28，A36，A42M，A75M，A58M，A58B，A58C， A58C2，A58C3，A58D，A58H，A58H1，A58HE， A58HM，A90H，A110，A170，A170H，AM36， AM58M，AM58B，AM58C，AM58C2，AM58C3， AM58D，L18，L18B，L18C，L18T，L23，L35，L35T， L37，L50，MT，CMT，PCMT
Input signal	Output signal

The positions of switches depending on interpolation factor and linear／rotary en－ coder reference mark width

Reference mark width T／4

Switches position	
$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6\end{array}$	factor
！\｜\｜\｜	1
』 \｜\｜\｜	2
』日月！日』	3
！¢ ！！	4
！！！！	5
！！！！	8
！！！！	10

Reference mark width T／2

Switches position	
123456	factor
－ロ 日－	1
回回明	2
	3
	4
1明明	5
	8
－\＆\｜日	10

ACCESSORIES

CONNECTORS FOR CABLE	B12 12－pin round connector	C9 9－pin round connector	C12 12－pin round connector	D9 9－pin flat connector	D15 15－pin flat connector	RS10 10－pin round connector	ONC 10－pin round connector
CONNECTORS ON HOUSING	$\begin{aligned} & \text { C9 } \\ & 9 \text {-pin round } \mathrm{c} \end{aligned}$	ctor	C12 12－pin round connector	D9 9－pin flat connector	D15 15－pin flat connector	RS10 10－pin round connector	ONC 10－pin round connector

CABLE
Cable $\varnothing 6 \mathrm{~mm}$
Armoured cable $\varnothing 6 \mathrm{~mm}$

DIGITAL READOUT DEVICES

 CS3000
ORDER FORM

CS 3000-2, CS 3000-3

CS 3000

TWO AND THREE AXIS READOUT DEVICES

TECHNIGAL DATA

Input standard	RS 422
Power supply for encoders	+5V DC
Resolution of linear encoders	0.5;1; 2; 5; 10; 20; $50 \mu \mathrm{~m} ;$ $0.1 ; 0.2 ; 0.5 ; 1 ; 5 ; 10 \mathrm{~mm}$
Resolution of rotary encoder	$1^{\circ}-0,0001^{\circ}$
LED green display, 7 digit and sign	14 mm height
Maximum input signals frequency	100 kHz
Power supply	DC 8-30 V/0.8A Power supply adapter: - input: AC 100 V ~ 240V, $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ - output: DC 8~30 V; 0,8A
Power consumption	5 W
Overall dimensions	$214 \times 139 \times 29.5 \mathrm{~mm}$
Weight	0.9 kg
Operation temperature range	$0^{\circ} \mathrm{C}-+50^{\circ} \mathrm{C}$

FEATURES

Measuring in millimeters or inches (inch/mm)
Radius calculation (1/2)
Measuring in relative or absolute coordinate system (INC/ABS)

Entering or setting zero values for the selected axis
Memory for last position after switch off
Linear movement measurement (by means of linear encoders)

Rotary movement measurement (by means of rotary encoders)
Movement direction indication
Error correction: linear compensation
MECHANIGAL DATA

Serial interface RS232

ORDER FORM

COMPATIBLE WITH:

A28, AP58, A36, A42M, A75M, A58M, A58B, A58C, A58C2, A58C3, A58D, A58H, A58H1, A58HE, A58HM, A90H, A110, A170, A170H, L18, L18B, L18C, L18T, L23, LK24, L35, L35T, L37, L50, MT, CMT, PCMT, MK.

CS 5000

ADVANCED TWO AND THREE AXIS READOUT DEVICES

TECHNIGAL DATA

Input standard	RS 422
Power supply for encoders	+5 V DC
Resolution of linear encoders	$0.1 ; 0.2 ; 0.5 ; 1 ; 2 ; 5 ; 10 ; 20 ; 50 \mu \mathrm{~m} ;$
Resolution of rotary encoder	$1^{\circ}-0,0001^{\circ}$
LED green display, 7 digit and sign	14 mm height
Maximum input signals frequency	500 kHz
Power supply	$\mathrm{AC} 85 \mathrm{~V} \sim 230 \mathrm{~V}$
Power consumption	5 W
Overall dimensions	$295 \times 182 \times 30.5 \mathrm{~mm}$
Weight	2.6 kg
Operation temperature range	$0^{\circ} \mathrm{C}-+50^{\circ} \mathrm{C}$

FEATURES

MECHANIGAL DATA
Measuring in millimeters or inches (inch/mm)
Measuring system calibration in relation to reference point (REF)
Radius calculation (1/2)
Measuring in relative or absolute coordinate system (INC/ABS)
Entering or setting zero values for the selected axis Linear movement measurement (by means of linear encoders)
Rotary movement measurement (by means of rotary encoders)
Memory for last position after switch off Entering shrinkage rate
Setting 999 datum systems in SMD mode

Movement direction indication
Machining modes:

- holes drilling along circle
- holes drilling along oblique line

Error correction: linear compensation
Inside calculator
Serial interface RS232

COMPATIBLE WITH:

A28, AP58, A36, A42M, A75M, A58M, A58B, A58C, A58C2, A58C3, A58D, A58H, A58H1, A58HE, A58HM, A90H, A110, A170, A170H, L18, L18B, L18C, L18T, L23, LK24, L35, L35T, L37, L50, MT, CMT, PCMT, MK.

ORDER FORM

ENCODER ELECTRIGAL CONNECTION

FOR ~ $11 \mu \mathrm{~A}$

9-PINS FLAT CONNECTOR D9, MALE

8	4	7	3	6	2	5	9	1
$\mathrm{I}_{1}+$	I_{1} -	$\mathrm{I}_{2}+$	I_{2} -	$I_{0}+$	$I_{0}-$	+5V	OV	Shield
Green	Yellow	Blue	Red	Grey	Pink	Brown	White	Shield

*External shield is connected to connector housing. Internal shield is connected to OV. When connector is placed on encoder housing the internal shield is missing.

9-PINS ROUND CONNECTOR C9, MALE

*External shield is connected to connector housing. Internal shield is connected to pin 9. When connector is placed on encoder housing the internal shield is missing.

10-PINS ROUND CONNECTOR ONC, MALE

*External shield is connected to connector housing. Internal shield is connected to OV. When connector is placed on encoder housing the internal shield is missing.

12-PINS ROUND MINI CONNECTOR HR10A

For
cable

8-PINS ROUND MINI CONNECTOR HR25

For housing

Pin number	1	2	3	4	5	6	7	8
Color	Green	Yellow	Blue	Red	Grey	Pink	Brown	White
A	I_{1+}	I_{1}.	I_{2+}	I_{2}	I_{0}.	10.	+5V	OV

ENCODER ELECTRIGAL CONNECTION

FOR~1Vpp; TTL; HTL

9-PINS FLAT CONNECTOR D9, MALE

For cable

For housing

Pin number	8	4	7	3	6	2	5	9	1
Color	Pink	Grey	White	Brown	Yellow	Green	Red	Blue	Shield
AV (1V)	A+	A-	B+	B-	R+	R-	+5V	OV	Shield
$\begin{gathered} \pi L \\ U=+5 V \end{gathered}$	U1	U1	U2	Ū2	U0	Ū0	+5V	OV	Shield
$\begin{gathered} \mathrm{HTL} \\ \mathrm{U}=+(10 \ldots 30) \mathrm{V} \end{gathered}$	U1	U1	U2	Ū2	U0	Ū0	+(10...30)V	OV	-

*External shield is connected to connector housing. Internal shield is connected to OV. When connector is placed on encoder housing the internal shield is missing.

12-PINS ROUND CONNECTOR C12, MALE

For cable

For housing

Pin number	5	6	8	1	3	4	12	10	2	11
Color	Pink	Grey	White	Brown	Yellow	Green	Red	Blue	Black	Violet
AV ($\sim 1 \mathrm{~V}$)	A+	A-	B+	B-	R+	R-	+5V	ov	Sensor +5 V	Sensor OV
$\begin{gathered} \pi L \\ U=+5 V \end{gathered}$	U1	Ū1	U2	Ū2	U0	U0	+5V	OV	Sensor +5 V	Sensor OV
$\begin{gathered} \mathrm{HTL} \\ \mathrm{U}=+(10 \ldots . .30) \mathrm{V} \end{gathered}$	U1	U1	U2	Ū2	U0	Ū0	+(10...30)V	OV	$\begin{gathered} \text { Sensor } \\ +(10 . . .30) \mathrm{V} \end{gathered}$	Sensor OV

*External shield is connected to connector housing. Internal shield is connected to OV. When connector is placed on encoder housing the internal shield is missing.

12-PINS ROUND CONNECTOR B12, MALE

Pin number	C	D	E	L	G	H	K	B	A
Color	Pink	Grey	White	Brown	Yellow	Green	Red	Blue	shield
AV ($\sim 1 \mathrm{~V}$)	A+	A-	$B+$	B-	R+	R -	+5V	OV	shield
$\begin{gathered} T \mathrm{~L} \\ U=+5 \mathrm{~V} \end{gathered}$	U1	Ū1	U2	Ū2	U0	ŪO	+5V	OV	shield
$\begin{gathered} \mathrm{HTL} \\ \mathrm{U}=+(10 \ldots 30) \mathrm{V} \end{gathered}$	U1	Ū1	U2	Ū2	U0	ŪO	+(10...30)V	OV	shield

*External shield is connected to connector housing. Internal shield is connected to OV.

ENCODER ELECTRIGAL CONNECTION

FOR ~ 1Vpp; TTL; HTL

15-PINS FLAT CONNECTOR D15, MALE

For cable

Pin number	3	13	4	14	5	15	1	2	6
Color	Pink	Grey	White	Brown	Yellow	Green	Red	Blue	Shield
$\begin{gathered} \pi L \\ U=+5 V \end{gathered}$	U1	Ū1	U2	Ū2	U0	ŪO	+5V	OV	Shield

${ }^{*}$ External shield is connected to connector housing. Internal shield is connected to OV. When connector is placed on encoder housing the internal shield is missing.

10-PINS ROUND CONNECTOR ONC, MALE

For cable

$U=+5 \mathrm{~V} \pm 5 \%$

Pin number	1	2	3	4	10	9	5	6	7
Color	Pink	Grey	White	Brown	Yellow	Green	Red	Blue	Shield
$\begin{gathered} T \mathrm{~L} \\ \mathrm{U}=+5 \mathrm{~V} \end{gathered}$	U1	Ū1	U2	Ū2	U0	Ū0	+5V	OV	Shield

For housing
External shield is connected to connector housing. Internal shield is connected to OV. When connector is placed on encoder housing the internal shield is missing. ${ }^{ *}$ For encoder $A 58 B$ voltage supply +5 V is on pin 8.
$U=+5$ and +15 V

Pin number	1	2	3	4	10	9	8	5	6	7
$T L$ $U=5 / 15 \mathrm{~V}$	U 1	$\bar{U} 1$	U 2	$\bar{U} 2$	U		$\bar{U} 0$	+5 V	+15 V	0 V

*External shield is connected to connector housing. Internal shield is connected to OV. When connector is placed on encoder housing the internal shield is missing.

10-PINS ROUND CONNECTOR RS10, MALE

For cable

Pin number	5	8	3	6	10	1	2	9	4
Color	Pink	Grey	White	Brown	Yellow	Green	Red	Blue	Shield*
$\begin{gathered} T L \\ U=+5 V \end{gathered}$	U1	Ū1	U2	Ū2	U0	ŪO	+5V	OV	Shield

[^12]
12-PINS ROUND MINI CONNECTOR HR10A

8-PINS ROUND MINI CONNECTOR HR25

For cable

For housing

Pin number	1	2	3	4	5	6	7	8
Color	Pink	Grey	White	Brown	Yellow	Green	Red	Blue
AV	A+	A-	B+	B-	R+	R-	$+5 \mathrm{~V}$	OV
TTL	U_{1+}	U_{1}.	U_{2+}	U_{2}	U_{0}.	U_{0}.	$+5 \mathrm{~V}$	OV
HTL	U_{1+}	U_{1}	U_{2+}	U_{2}.	U_{0}.	U_{0}.	+10...30V	OV

CABLE LENGTHS

Maximal encoder (linear of rotary) cable length depending on output signal type is:

- sine-wave current signal A ($11 \mu \mathrm{~A})-5 \mathrm{~m}$;
- sine-wave voltage signal AV (~1V) - 25 m ;
- square-wave signal F (TTL) - 25 m;
- square-wave signal $F(H T L)$ - 25 m.

The encoders can be equipped with additional prolonging cable (diameter 7 mm) with different cable connectors ONC, RS10, D9, C9, C12, B12 depending on customer requirements. This cable has an additional sensor circuits U and OV. Linear encoder cable can be protected by metal hose with additional plastic cover (IP64) type SYLVIN. Metal hose has diameter of 10 mm .
"Precizika Metrology" is the new name of former Lithuanian-American Joint Venture "Brown \& Sharpe - Precizika". The company has proud history of old traditions in the leadership of design and production of metrological equipment. Its workforce has been involved for over fifty years in the supply of measuring technology and systems to automate factories as well as in the development of optical scale manufacturing technology.
In 2000 the production process was certified to fully meet the requirements of ISO 9002, in 2003 - ISO 9001.

The company's goal is to consistently supply high quality products and services to meet customer demands on a timely basis. The main company's products are the linear and angular glass scale gratings, the linear and rotary displacement measuring systems, the mechanical parts and components.

We are attentive to every Your inquiry and we are sure of that timely and right attitude along with sincere human attention leads us to long-lasting cooperation.

Žirmūnų str. 139,LT-09120
Vilnius, Lithuania
sales@precizika.lt
Tel.: +370 (5) 2363683
Fax.: 370 (5) 2363609

[^0]: Note:

 1. Maximum working rotation speed (with proper encoder counting) is limited by maximum operating frequency and maximum mechanical rotation speed.
 2. If cable extension is used, power supply conductor cross-section should not be smaller than 0.5 mm 2
[^1]: * See electrical data for possible bit selec-

[^2]: ORDER EXAMPLES: 1) AK36-ST-S-B9/MO-B-ARO2N-0
 2) AK36-MT-B-B20/M12-G-AR01/C12-1

[^3]: * only one mounted connector depending on signal version

[^4]: Please confirm configuration options before ordering or contact Customer Service for assistance.

[^5]: D, mm

[^6]: ORDER EXAMPLES:

 1) $\mathrm{A} 170-\mathrm{F}-360000 / 36000-\mathrm{K}-25-\mathrm{C}-\mathrm{AR} 01 / \mathrm{C} 12-1$
 2) A170-F-360000-K-25-S-AR01/C12-1
[^7]: $\left(^{*}\right)$ Add holes at 40 mm from cut ends, when the first hole at constant step is at a distance $X>175 \mathrm{~mm}$.

[^8]: *Version C - without reference signal
 Version E - zero signal is generated when external zero actuator acts to reference mark, which is made on magnetic band.
 It is possible to use several actuators.
 Version Z - zero signal is generated when reference mark is acted by actuator incorporated into reading head
 **The smaller is the gap between reading head and magnetic band the better is accuracy of encoder.
 Note: For heavy working conditions the special version of encoder is available (see data sheet for models CMT and PCMT).

[^9]: *Version C - without reference signal
 Version E - zero signal is generated when external zero actuator acts to reference mark, which is made on magnetic band.
 It is possible to use several actuators.
 Version Z - zero signal is generated when reference mark is acted by actuator incorporated into reading head
 **The smaller is the gap between reading head and magnetic band the better is accuracy of encoder.

[^10]: Note: In order to ensure the accuracy of encoder magnetic band must be longer than ML by 80 mm (40 mm from each side)

[^11]: Note: In order to ensure the accuracy of encoder magnetic band must be longer than ML by 80 mm (40 mm from each side)

[^12]: *External shield is connected to connector housing. Internal shield is connected to OV. When connector is placed on encoder housing the internal shield is missing. ${ }^{* *}$ For voltage supply +(10...30)V is used pin 7.

